MARKING SCHEME (2024-25) CLASS – XI BIOLOGY

Q. No	Expected Answer/ Value Point		Marks
1.	b, Triticum aestivum		1
2.	b, Archae bacteria		1
3.	b, Volvox		1
4.	Androecium/stamens		1
5.	b, Synovial joint		1
6.	Annelida		1
7.	C, Mitochondria		1
8.	Endoplasmic reticulum		1
9.	Nitrogen		1
10.	b, Manganese / Mn		1
11.	a, Carbohydrate		1
12.	a, Gibberellins		1
13.	Pyruvic acid		1
14.	Adrenaline and nor adrenaline	(ony one)	1
15.	b Urea		1
16.	b, A & R both are true but R is r	·	1
17.	C, A is true, but R is false. As the narrowing of blood vessles is also due to deposition of calcium and fibrous tissue besides fat and cholesterol. B, A & R both are true but R is not correct explanation of A.		1
10.	B, A & IX Bottl are tide but IX is i	Tot correct explanation of A.	'
	Section-B		
	Intra cellular digestion	Extra cellular digestion	
19.	Digestion with in cell e.g. Amoeba Few	1.Digestion is in between cells.	1
	enzymes are involved.	e.g. man Number of enzymes involved.(Any two)	1
	Or		
	Direct Development 1. Young ones resemble the	Indirect development 1. Young ones do not resemble	1
	adults in all respect.	the adults.	'
	2. No intermediate stage.	2. Larval stage is intermediate	1
	2. No intermediate stage.	stage	
20.	Angiosperms and Gymnosperms are seed procducing plants but they are classified differently because		
	Angiosperms are flowering plants and Gymnosperms are non flowering.		1
	2. In angiosperms seeds are enclosed in fruits but in gymnosperms seeds are naked as there is no fruit formation.		1

Q. No	Or Heterospory is a phenomenon in which two kinds of spores are borne on the same plant. The two kinds of spores differ in size & produce male & female gametophyte. Formation & retention of zygote takes place on female gametophyte. Heterospory is thus considered an important step in		Marks
			2
	evolution as it is a precursor to	·	
21.	Pinnately Compound leaf 1. Midrib is elongated. 2. Leaf lets are present along the midrib.	Palmate compound leaf Midrib is disc shaped	1 1
22.	Mesosomes. Invagination/ interdigitation of plasma membrane in bacterial cell. Functions:		1
	1. Involved in cytokinesis.		1/2
	Bears enzymes esential for c Or	exidising food.	1/2
	Metacentric : Centromere is ex two arms are equal.	cactly in the centre and the	1/2
	Submetacentric: Centromere the two arms are unequal.	is slightly away from centre and	1/2
	Telocentric : Centromere is towards the terminal area.		1/2
	Acrocentric : Centromere is is	subterminal.	1/2
23.	A leaf kept dark for long become	es yellow or pale green because	1
	of disintegration of chlorophyll (colour are more stable.	Carotenoid which provide yellow	1
24.	Hypothalamic Harmones -	Pituitary.	1/2
	Thyrotrophin (TSH) -	Thyroid.	1/2
	Corticotropin -	Adrenal cortex.	1/2
	Gonadotropin (LH, FSH) -	Ovary/Testis	1/2
25.	(a) Smooth muscles	iv) Involuntary	1/2
	(b) Tropomyosin	ii)Thin filament	1/2
	(c) Red muscle	I) myoglobin	1/2
	(d) Skull	iii) Sutures	1/2

Q. No	Expected Answer/ Value Point		Marks
26.	C ₃ Pathway	C ₄ Pathway	
	1. RUBP is Primary acceptor.	PEP is Primary acceptor.	1
	2. Optimum temperature for	Optimum temperature is	1
	photosynthesis is 10-25°C.	30-45°C	
	3. Phosphoglyceric acid is	Oxaloacetic acid is first	1
	first product.	product.	
	Or		
	Cyclic Photophosphorylation	Non Cyclic Photophosphorylation	
	1. Performed by photo	Performed by both	1
	system-I independently.	photosystem I &	
	2. It synthesises ATP only.	It synthesises ATP and NADH ₂	1
	3. It is not connected with	It is connected with	1
	photolysis of water.	photolysis of water	
27.	Kreb's cycle		
	CO_2 + PEP \longrightarrow C_4 acid	Mesophyll cell.	1
	$\begin{array}{c} \text{CO}_2^+ \text{ PEP} & \longrightarrow & \text{C}_4 \text{ acid} \\ \text{C}_4 \text{ acid} & \xrightarrow{\text{Decarboxylation}} & \text{C}_3 \text{ Acid} \\ \end{array}$	Bundle Sheath cells	1
	C ₃ acid Regeneration PEP	Mesophyll cells	1
28	Gall bladder Lung Fat bodies Kidney Ureter Urinary bladder Cloacal Aper	hymen	3

Q. No	Expected Answer/ Value Point	Marks
29.	Hypogynous- Gynoecicm occupies highest position, while other parts are situated below it	1
	Perigynous - Gynoecicm in centre Other parts are located on the rim of the thalamus almost at the same level.	1
	Epigynous Ovary is enclosed inside the thalamus other parts are inserted above the ovary	1
30	(a) Operculum iv) Osteichthyes.	1/2
	(b) Parapodia vii) Annelida	1/2
	(c) Radula ii) Mollusca	1/2
	(d) Choanocytes I) Porifera	1/2
	(e) Gill slits iii) cyclostomes.	1/2
	(f) Comb plates v) Ctenophora	1/2
31.	1. ? L)ack membrane band nucleus.	1/2
	? Lack: Cell organelles	1/2
	2. Lysosomes	1
	3. In mitochondria ATP is produced that is why it is	2
	called powerhouse of cell. Or	
	Smooth ER: Synthesis of lipids.	
	Golgi apparatus: It is packing organelle.	
32.	(a) A Troponin	1/2
	B Fropomyosin	1/2
	(b) A Masks the active site of actin filament.	
	(c) Monomer of C: Meromyosin, C is Actin	2
	Or Myosin bears actin binding sites, through which it binds to actin filament.	
33.	Protozoans belong Kingdom Protista.	1
	Chrysophytes Diatoms and Desmids.	1
	Dinoflagellates -Gonyaulax	1
	Fuglendids Euglena	1
	Sporozoans Plasmodium	1

Q. No	Expected Answer	r/ Value Point	Marks
33.	Or		
	Economic importance Algae :-	nd out by algae Porphyra	
	Half of the CO? fixation is carried out by algae Porphyra, Laminoria and Sargassum are used as feed.		1
	Laminaria and Sargassum are used as food. 2. Water holding are Substances like algin carrageen are		'
	obtained from algae.		1
	3. Chlorella is used as food suppl	lement.	1
	Economic importance of gymnosperms. 1. In cycas small specialised roots called coralloid roots are		
	associated with N ₂ fixing cyand 2. In Pinus the roots are associate		1
	in the form of mycorrhiza.		1
34.	Substages of Phase Fof Meiosis-	I	
	1. Leptotene: Chromosomes show	compaction and it	
	continues throughout the stage.		1
	2. Zygotene: Homologous chromos	somes start pairing	
	together and this process of association is called synapsis.		
	The paired chromosomes are called bivalents.		1
	3. Pachytene: The bivalent is seen as tetrad Crossing over		
	occurs between non- sister chromatids.		1
	4. Diplotene: It is characterised by	the dissolution of	
	syraptonemal complex and formation of Chiastmata takes place.		1
	5. Diakinesis: It is marked by terminalisation of chiastmata. Or		1
	Mitosis	Meiosis	
	1. occurs in somatic cells/	Occur in germinal cells.	1
	General body cells.		
	2. It is equational division.	It is Reductional division.	1
	3. From one parent cell, bour two	From one Parent cell our	_
	daughter cells are produced.	daughter cells are produced.	1
	4. No Crossing over.	Crossing over lakes place.	1
	5. It is short process.	It is long process.	1

Q. No	Expected Answer/ Value Point	Marks
35.	Fishes have a 2 chambered heart with an	
	atrium and a ventricle.	1
	Amphibian an reptiles except crocodile) have a 3 chambered	
	heart with two atria and a single ventricle.	2
	Crocodile, birds and mammals possess a 4 chambered heart	
	with two atria and two ventricles. Or	2
	Cardiac cycle: All the four chambers are in relaxed	
	state i.e. diastole.	1
	 The bicuspid and tricuspid values are open and blood 	
	flow into left and right ventricles.	1/2
	* Semi lunar values are closed	
	* SAM now generates an action potential which	
	stimulates simultaneous contraction of atria.	1/2
	 This increases the blood flow in ventricles, due to which 	
	the action potential is conducted in ventricles through	
	AVN & AV bundle, and bundle of HIS, as a result the ventricles contract and atria relax.	1/2
	* Ventricular systole causes closure of bicuspid &	1/2
	tricuspid values semi lunar values open.	1/2
	 Ventricles diastole causing closure of semilunar values. 	1/2
	* As the pressure declines the tricuspid & bicuspid values	
	are pushed open & the joint diastole is achieved.	1/2
	Cardiac output: In one cardiac cycle 70 mL of blood is pumped and heart pumps 72 minutes so total volume of	
	blood pumped 70 x 72= approximately 5000ml or 5 litres.	1
	approximately eccentive end and ecc	