Sample Paper (2023-24)

Class 11 th (Sr. Secondary)										Code	: CH	E-85	56		
Roll No.															

Chemistry

(English Medium)

Academic

[Time allowed: 3 hours] [Maximum Marks: 70]

General Instructions:-

Read the following instructions carefully and strictly follow them.

- (i) This question paper is divided into five sections A, B, C, D and E.
- (ii) This question paper contains 35 questions. All questions are compulsory.
- (iii) In Section A Question No. 1 to 18 are multiple choice (MCQ) type questions carrying 1 mark each.
- (iv) In Section B Question No. 19 to 25 are very short answer (VSA) type questions carrying 2 marks each.
- (v) In Section C Question No. 26 to 30 are short answer (SA) type questions carrying 3 marks each.
- (vi) In Section D Question No. 31 and 32 are case based questions carrying 4 marks each.
- (vii) In Section E Question No. 33 to 35 are long answer (LA) type questions carrying 5 marks each.
- (viii) There is no overall choice. However an internal choice has been provided in two questions in Section B, two questions in Section C, two questions in Section D and two questions in Section E.
- (ix) Use of calculators is not allowed.

SECTION-A

Question No. 1 to 18 are multiple choice (MCQ) type questions, carrying 1 mark each.

(18x1=18)

1.	How many sign	nificant figures a	are present	in 0.0025		
	(a) 2	(b) 4	(c) 1		(d) 3	
2.	How many unp	paired electrons a	are presen	t in chrom	ium	
	(a) 5 unpaired	e s (b) 6 unp	paired e s			
	(c) 3 unpaired 6	$e^{-}s$ (d) 1 unp	paired e			
3.	Among haloger	ns the correct or	der of amo	ount of end	ergy released durin	ng the
	gain of electron	ı is.				
	(a) $F > Cl > Bt$	r > I (b) F < Cl <	Br < I		
	(c) $F < Cl > Br$	> I (d) F < Cl <	Br > I		
4.	Which among t	the following are	e diamagn	etic?		
	(a) N_2^+	(b) N_2^{2-}	(c) O ₂	(d)	O_2^{2-}	
5.	What is the mo	lar mass of H ₂ O	in g <mark>m</mark> /mo) 1		
	(a) 44	(b) 18 (c)) 17	(d)	60	
6.	For the process	to occur under	adiabatic (conduction	is the correct cond	ition is
	(a) $\Delta T = 0$	(b) $\Delta P = 0$	(c) q :	= 0	(d) w = 0	
7.	Find the oxidat	ion number of in	ron in K ₄ []	$Fe(CN)_6$		
	(a) +2	(b) $+3$ (c)) +4	(d) +1		
8.	An electrophill	ic reagent is				
	(a) Electron de	ficient species		(b) Electr	on rich species	
	(c) Negatively	charged species		(d) Lewis	s base	
9.	ΔU° of combus	stion of methane	is –X KJ/	mol. The	value of ΔH is	
	$(a) = \Delta U^{\circ}$	$(b) > \Delta U$	Jo	$(c) < \Delta U^{\circ}$	(d) = 0	
10	.Arrange the fol	lowing in the de	ecreasing of	order of the	eir boiling point.	
	n-butane, n-per	ntane, 2-methyl l	butane			
	(a) n-pentane >	2-methyl butan	e > n-buta	ne		

(b) n-butane >	· 2-methyl butane	> n-pentan	ie			
(c) 2-methyl butane > n-butane > n-pentane						
(d) 2-methyl b	outane > n-pentan	e > n-butan	ie			
11. Magnetic Qu	antum number fo	r the valenc	ce electron o	of Potassium is		
(a) 0	(b) 1	((c) 2	(d) 7		
12. The shape of	carbocation is					
(a) planar	(b) linear	(c) pyr	amidal	(d) Tetrahedral		
13. How many m	nolecules of water	are presen	t in 0.01 mo	le of it.		
(a) 6.022 x 1	0^{23} (b	6.022 x 1	0^{21}			
(c) 6.022 x 1	0^{22} (d) 6.022 x 1	0^{24}			
14. How many	hydrogen bond	ded water	molecules	are associate	d with	
CuSO ₄ .5H ₂ O						
(a) 1	(b) 2		(c) 3	(d) 4		
For question	as 15 to 18, tv	wo stateme	ents are g	iven one labe	lled as	
Assertion(A)	and the other la	bell <mark>ed</mark> as F	Reas <mark>o</mark> n(R).	Select answer t	these	
questions from	m the codes (a), (b	o), (<mark>c)</mark> , (d) a	s given belo	OW.		
(a) Both Ass	sertion(A) and Re	eason(R) are	e true and R	Reason(R) is the	correct	
explanation o	f the Assertion(A)				
(b) Both Asso	ertion(A) and Rea	ason(R) are	true but Re	eason is not the	correct	
explanation o	f the Assertion					
(c) Assertion((A) is true but Rea	ason(R) is f	alse.			
(d) Assertion((A) is false but Re	eason(R) is	true.			
15. Assertion	: A substance v	which gets r	reduced can	act as the reduc	ing	
Daggan	agent.	agant itaalf	ant radinas	1		
Reason	: An oxidizing		get reduced	l .		
16. Assertion	: Graphite is an		£1			
Reason		_	m of a subs	stance containin	g same	
	kind of atoms	S.				

17. Assertion : Acetylene is more acidic than ethane.

Reason : Acetyleve has sp character of carbon and therefore more s-

character.

18. Assertion : Dipole moment of cis Isomer is less than the trans isomer.

Reason : cis and trans are the geometrical isomers.

SECTION-B

19.(a) What is the lowest value of n that allows g orbital to exist?

(b) How many electrons in an atom may have the following quantum numbers?

$$n = 4$$
, $ms = -\frac{1}{2}$ (2x1=2)

20.(a) What will be the effect on equilibrium of the following reaction, when volume of vessel increases?

$$2N_2O(g) + O_2(g)$$
 \longrightarrow $4NO(g), \Delta H > 0$

(b)
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \Delta_r H^\circ = 124 \text{ KJ/mol}$$

What will be the value of Kc for the reverse reaction, if Kc for the decomposition of phosphorus pentachloride is 8.3×10^{-3} (2x1=2)

21. Balance the following equation by ion electron method in acidic medium.

$$Cr_2O_7^{2-} + C_2H_4O \rightarrow C_2H_4O_2 + Cr^{3+}$$
 (2)

22.Draw the resonance structures for the compound CH₂=CH-C=O

23. What do you mean by buffer solution. Explain the types of buffer with suitable example. (2)

24. Discuss the mechanism of Friedal Craft Acylation of benzene ring. (2)

OR

Draw Newman projections for the conformations of ethane. Which of these conformations is more stable and why? (2)

- 25. Arrange the elements N,P,O and S in the order of
 - (a) Increasing first ionization enthalpy
 - (b) Increasing Non-metallic character (2)

Assign the position of the elements having outer electronic configuration.

(a) $ns^2 np^4$ for n=3

(b)
$$(n-1) d^2ns^2$$
 for $n=4$ (2)

SECTION-C

- 26. In three moles of ethane (C₂H₆) calculate the following
 - (a) Number of moles of carbon.
 - (b) Number of moles of hydrogen atoms
 - (c) Number of molecules of ethane (3x1=3)
- 27. The first IE₁ and second IE₂ ionisation enthalpies (KJ/mol) of three elements
 - A, B and C are given below

Element	IE ₁	IE_2
A	403	2640
В	549	1060
C	1142	2080

Identify the element which is likely to be

- (a) a non metal
- (b) An alkali metal

28.Enthalpy and entropy changes of a reaction are 40.63 KJ/mol and 108.8 J/K/mol respectively. Predict the feasibility of the reaction at 27° C. (3x1=3)

OR

The standard enthalpies of formation of $SO_2(g)$ and $SO_3(g)$ are - 296.6 KJ and -395.6 KJ respectively. Calculate ΔH° for the reaction.

$$SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$$
 (3)

29.(a) 0.3780 gm of an organic compound gave 0.5740 gm of silver chloride in carius estimation. Calculate the %age of chlorine present in the compound (b) What is the principle of paper chromatography? (2+1)

Explain the term Inductive effect and electromeric effect with suitable examples. (3)

30.(a) Calculate the pH value of 0.01 M NaOH

(b) What will be the conjugate base of HSO_4^- (2+1)

SECTION-D

The following questions are case based questions. Read the case carefully and answer the questions.

31.In thermodynamics, the energy changes may be measured in the laboratories under two common conditions: One in which the volume of the system is kept constant and other in which the pressure applied on the system is kept constant. The energy change at constant volume is called internal energy change (ΔU) and energy change at constant pressure is called enthalpy change (ΔH).

The two quantities are related to each other as $\Delta H = \Delta U + P\Delta V$. The heat changes reported are enthalpy changes because most of the processes are carried out in open vessels i.e. at-constant pressure. The common enthalpy changes are enthalpy of solution, enthalpy of neutralization, enthalpy of hydration etc.

Answer the following questions:-

(a) When a reaction is carried out at constant volume, the heat evolved at 298K – 87.425 KJ. Calculate the enthalpy change for this reaction of ammonia formation.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$
 (2)

OR

(a) Under what conditions heat exchange at constant volume becomes equal to heat exchange at constant pressure. Explain it by taking suitable example. (2)

(b) For which of the following reaction $\Delta H < \Delta U$ and $\Delta H > \Delta U$

(i)
$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(1)$$

(ii)
$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

(iii)
$$H_2O(1) \longrightarrow H_2O(g)$$
 (2)

32.Organic compounds are vital for sustaining life on earth. We depend on these compound for our food, clothing medicines etc. For systematic study of organic compounds, we classify these compounds depending upon their structural features and chemical behaviour. We have assigned name to these organic compounds on the basis of certain standard rule as per IUPAC system of naming. The name of organic compound consist of three parts word root, suffix and prefix.

Answer the following questions

(a) Write the IUPAC name of the compound

- (b) Draw the bond line formula for the compound pent-3-en-1-yne
- (c) Draw the structures and write the IUPAC names of first four homologues members of carboxylic acid series. (1+1+2)

OR

(c) Give IUPAC names of the following compounds

SECTION-E

33.(a) A golf ball has a mass of 40gm and a speed of 45 m/s. If the speed can be measured with accuracy of 2%. Calculate the uncertainly in position.

(b) Write two difference between orbit and orbital.

(3+2)

OR

- (a) Two particles A and B are in motion. If the wavelength associated with the particles A is $5x10^{-8}$ m, calculate the wavelength of particle B if its momentum is half of A.
- (b) Write two differences between emission and absorption spectrum. (3+2)
- 34.(a) Describe the hybridization in case of PCl₅. Why the axial bonds are longer than equatorial bonds in PCl₅.
 - (b) Why BeH₂ molecule has a zero dipole moment although, the Be-H bonds are polar. (3+2)

OR

- (a) Compare relative stability of the following species and indicate their magnetic properties i.e. O_2 , O_2^+ , O_2^- on the basis of Molecular Orbital Theory.
- (b) Although CO₂ and H₂O are triatomic molecules, the shape of H₂O molecule is bent while that of CO₂ is linear. Explain on the basis of dipole moment.

(3+2)

- 35.(a) Write a short note on following name reactions
 - (i) Sabatier Sanderson's reaction
 - (ii) Swartz reaction
 - (iii) Wurtz reaction
 - (b) Write the product and their IUPAC name obtained when hex-1-ene reacts with HBr in the presence of peroxide. (3+2)

OR

- (a) Convert ethane into butane.
- (b) What product is formed when vapours of ethyne are passed over red hot iron tube.
- (c) Ozonolysis of an alkene 'x' followed by decomposition with water and a reducing agent gave a mixture of two isomers of the formula C_3H_6O . Give the structure of the alkene and its IUPAC name. (1+1+3)