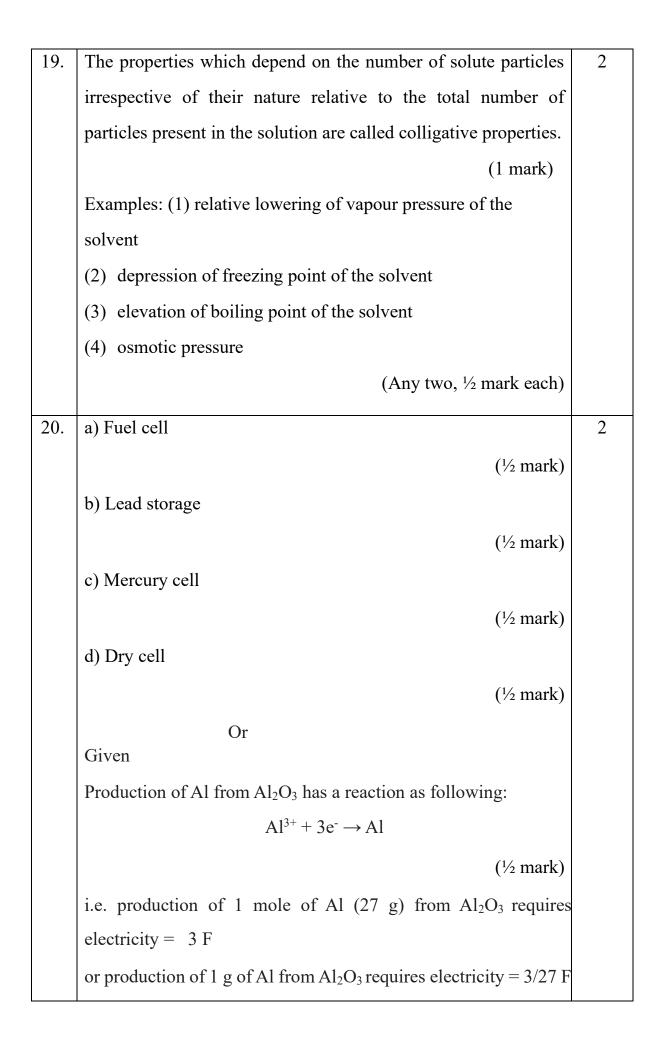
BSEH MARKING SCHEME


CLASS- XII

Chemistry (March-2024)

Code: B

The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q.	Answers	Marks
No.		
1.	d) Molality	1
2.	c) No reaction	1
3.	c) mol L ⁻¹ s ⁻¹	1
4.	a) La	1
5.	b) cis-platin	1
6.	b) Racemization	1
7.	c) 4-Nitroanisole	1
8.	b) β-D-Glucose	1
9.	b) Vitamin C	1
10.	Ideal solution	1
11.	Rare earth	1
12.	Cobalt	1
13.	51	1
14.	Tert-butyl Alcohols	1
15.	Carbonyl Chloride	1
16.	a) Both A and R are true, and R is the correct explanation of A	1
17.	d) A is false but R is true	1
18.	b) Both A and R are true, and R is not the correct explanation of A	

	(½ mark)	
	So, production of 40 g of Al from Al ₂ O ₃ requires electricity =	
	40/9 F	
	= 4.44 F	
	(½ mark	
	for answer, ½ mark for unit)	
21.	concentration of reactants & pressure in case of gases,	
	temperature, and catalyst.	2
	(½ mark each)	
22.	In the first transition series, Cu exhibits +1 oxidation state very	
	frequently.	
	(1 mark)	2
	2K ₂ Mno ₄ +2H ₂ O	
	2Cr3+7H2O+3T2 (1 mark)	
23.	tert-butyl bromide < sec-butyl bromide < isobutyl	
	bromide < n-butyl bromide	2

24.	The difference in the relative acidic strength if we compare the resonance hybrids of carboxylate ion and phenoxide ion		
	RCOOH ← − − − − − − − − − − − − − − − − − − 		
	OH OT + H+		
		(1 mark)	
	The electron charge is more dispersed in compression to the phenol ion the release of H ⁺ ion from carboxylic acid is easier than phenol.		
		(1 mark)	
		Or	
	The nucleophile which has two different electron donor atoms and can attack through two different sites are called as ambident		
	nucleophiles.	(1 mark)	
	For examples cyanide ion and nitrite ion represent ambident nucleophiles.		
	(1 mark)		
25.	i) p-nitroaniline, Aniline, p-toluidine		
	(1 mark)		2
	ii) NH ₃ , C ₂ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N		
	(1 mark)		
26.	Positive Deviation NonIdeal	Negative Deviation Nonideal	
	Solutions	solutions	
	1. Those liquid-liquid	1. Those liquid-liquid	
	solutions which has vapour	solutions which has vapour	2
	pressure more than	pressure less than	3
	expectations from Raoults' law.	expectations from Raoults' law.	
	law.	law.	

	2. The molecular interactions	2. The molecular interactions	
	of solution is weaker than	of solution is stronger than	
	that of solute and solvent.	that of solute and solvent.	
	$3. \Delta V > 0$	$3. \Delta V < 0$	
	$4. \Delta H > 0$	$4. \Delta H < 0$	
	5. They form minimum	5. They form maximum	
	boiling azeotrops.	boiling azeotrops.	
		(Any three, 1 mark each)	
27.	For a first order reaction:		
	2.30	03 [<i>R</i>]	
	$t = \frac{2000}{log} \frac{[11]}{log}$		
	k [R]		
			3
		(½ mark) Using this we get:	
		, , ,	
		100	
		— log —	
	, A	c 1	

$$t = \frac{2.303 \times 2}{k}$$

$$(\frac{1}{2} \text{ mark})$$
Also
$$t = \frac{2.303}{k} \log \frac{100}{10}$$

$$(\frac{1}{2} \text{ mark})$$

$$t = \frac{2.303}{k}$$

$$(\frac{1}{2} \text{ mark})$$

$$\frac{t_{99}}{\text{Now}} = \frac{\frac{1}{2.303}}{\frac{1}{2.303}}$$

$$\frac{t}{t} = 2$$

$$t = 2$$

$$(\frac{1}{2} \text{ mark})$$
Consider the reaction, $R \subseteq P$ is zero order reaction.
$$Rate = -\frac{d[R]}{dt} = k[R]$$

$$\Rightarrow Rate = -\frac{d[R]}{dt} = k$$

$$(\frac{1}{2} \text{ mark})$$

$$\Rightarrow d[R] = -kdt$$

Integrating both sides
$$[R] = -kt + I$$
Eq. 1

Where I is the constant of integration

(½ mark)

At t = 0, the concentration of the reactant $R = [R]_0$, where $[R]_0$ is initial concentration of the reactant.

(½ mark)

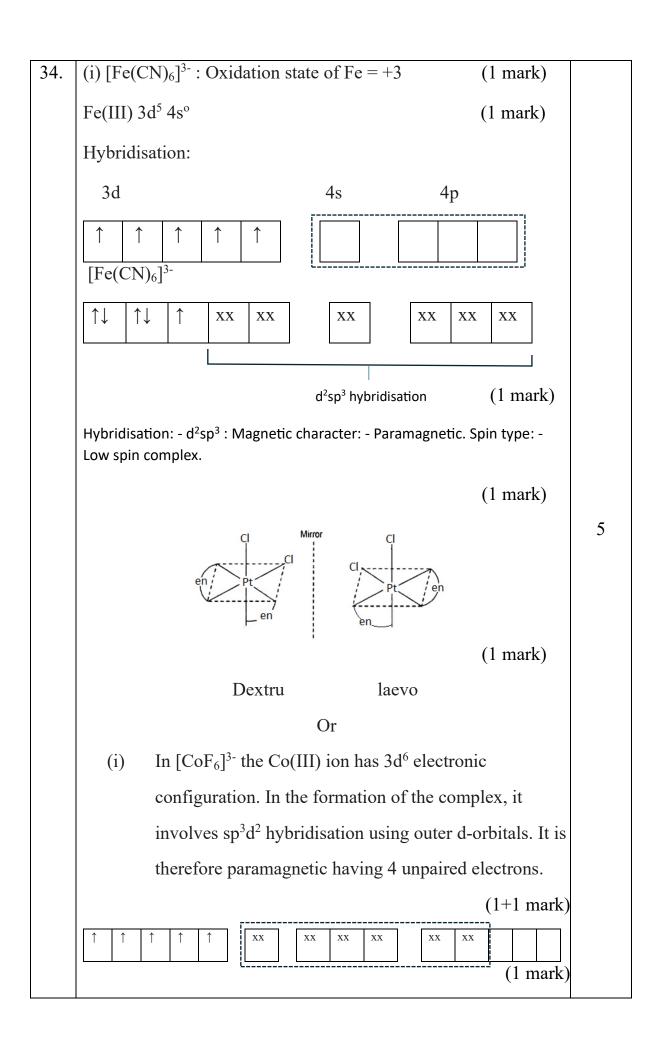
Substituting in above equation 1

$$[R] = -k \times 0 + I$$
$$[R] = I$$

(½ mark)

Substituting the value of I in the equation 1 [R] = -kt + [R] (½ mark)

$$\Rightarrow k = \frac{[R] - [R]}{t}$$


This is the integrated rate equation for a zero-order reaction.

(½ mark)

28.	i) ability to adopt multiple oxidation states ii) ability to form	
	complexes. iii) transition metals utilise outer d and s electrons	
	for bonding. This has the effect of increasing the concentration	
	of the reactants at the catalyst surface and also weakening of the	3
	bonds in the reacting molecules.	
	(1 mark each)	
29.	i) Freon-12 is used for aerosol propellants, refrigeration and	
	air conditioning purposes.	
	ii) Carbon tetrachloride is used in the synthesis of	
	chlorofluorocarbons and other chemicals, pharmaceutical	3
	manufacturing, and general solvent use.	3
	iii) Iodoform can be used as antiseptic.	
	(1 mark each)	
30.	A. CH CH CN	
30.	A: CH ₃ CH ₂ CN	
	B: CH ₃ CH ₂ CH ₂ NH ₂	
	C: CH ₃ CH ₂ CH ₂ OH	
	(½ mark each)	
	A: $C_6H_5NH_2$	
	B: C ₆ H ₅ N ₊₂ Cl ₋	
	C: C ₆ H ₅ OH	3
	(½ mark each)	
	Or	
	i) Ethylamine is capable of forming hydrogen bonds with water	
	as it is soluble but in aniline the bulk carbon prevents the	
	formation of effective hydrogen bonding and is not soluble.	
	(1 mark)	

ii) A Friedel-Crafts reaction is carried out in the presence of		
AlCl ₃ . But AlCl ₃ is acidic in nature, while aniline is a strong base		
Thus, aniline reacts with AlCl ₃ to form a salt and benzene ring is	S	
deactivated. Hence, aniline does not undergo the Friedel-Crafts		
reaction.		
(1 mark))	
iii) Gabriel phthalimide reaction gives pure primary amines	3	
without any contamination of secondary and tertiary amines		
Therefore, it is preferred for synthesising primary amines.		
(1 mark)		
31. (i) Dicholorocarbene, CCl ₂		
он mark)	
(ii) Salicylic acid		
(1 mark))	
Ог он І сно		
	4	
(iii) OH COOH COOCH31 COOH +(CH3COOH		
(1 mark)	
(iv) OH COOH Cao, NaOH		
Phenol (1 mark))	

22	(') 0.D.0.D. '1	(1 1)	
32.	(i) β-D-2-Deoxyribose	(1 mark)	
	(ii) Cytosine, uracil	(1 mark)	
	(iii) Hydrogen bonds	(1 mark)	4
	(iv) RNA	(1 mark)	
33.	2Cr(a) + 3Fe3+ (aq) === 2Cr3+ 3Fe(s)		
	$E = E^{\circ} - \frac{0.059}{6} \log \frac{(0.01)^{2}}{(0.01)^{3}}$	(1 manus)	
		(1 mark)	
	E° = 0.261 V		
	$E = 0.261 - \frac{0.059}{6} \log 10^{-2}$	(1 mark)	
	$=0.261 - \frac{0.059}{6} \times (-2)$		
	= 0.261 + 0.0197 = 0.2807 V	(1 mark)	
	(Deduct ½ mark for no or incorrect unit)		
	'A' will prevent iron from corrosion.		
	(1 mark)		
	So, we can cost the iron surface with metal A b	ecause it has	
	more negative E° value.		
	(1 mark)		
	Or		
	$\Lambda m = \frac{k \times 1000}{C}$		
	U _	_1	
	$C = 0.001 M, k = 3.905 \times 10^{-5} S G$	cm^{-1}	5
	$\therefore \Lambda_m = \frac{3.905 \times 10^{-5} \times 1000}{0.001}$	(1mark)	
	$= 39.05 \text{ S cm}^2 \text{ mol}^{-1}$		
	$CH_2COOH === CH_3COO^- + H^+$		
	$\Lambda_m^{\circ} = \lambda^{\circ} C H_3 C O O^- + \lambda^{\circ} H^+$		
	= 40.9+349.6=390.5 S cm ² mol ⁻¹	(1mark)	
	Degree of dissocistion $\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}} = \frac{39.05}{390.5} = 0.1$	(1 mark)	
	(Deduct 1 mark for no	or incorrect unit)	
	Electrochemical cell is a device used for the pro	duction of	
	electricity from energy released during spontar	neous chemical	
	reaction. Electrochemical cell converts chemica	ıl energy into	
	electrical energy.	(1mark)	
	If E°cell (external) > E°cell the cell starts acting as an ele		
	case, electrical energy is used to carry out non-spontar	ieous chemical	
	reaction. (1 mark)		
1	(± mark)	l	

	(ii) Dibromidobis (ethylenediamins) cobalt(III) ion.	
	(1 mark)	
	(iii) It ionizes as : $[Co(NH_3)_6]Cl_3 [Co(NH_3)_6]^{3+} + 3Cl$	
	∴ 4 ions are produced. (1 mark)	
	(Deduct 1 mark for no or incorrect Hybridisation)	
35.	2 CH3OH OCH3	
	(a) (i) CH ₃ CH ₂ CHO dry HCl CH ₃ CH ₂ CH COCH ₃	
	(ii) CH ₃ CH ₂ CHO dil NaOH CH ₃ CH ₂ CH CH(CH ₃) CHO	
	(iii) CH ₃ CH ₂ CHO H ₂ N-NH CH ₃ CH ₂ CH ₃	
	(1+1+1 mark)	
	(b) (i) CH ₃ COOH < HCOOH < FCH ₂ COOH < NO ₂ – CH ₂ COOH	
	(II) Acetophenone < Benzaldehyde < Acetone < Acetaldehyde	
	(1+1 mark)	5
	Or	
	Organic compound A is an ester as on acid hydrolysis it gives a	
	mixture of an acid and an alcohol.	
	(½ mark)	
	Oxidation of alcohol (C) gives acid (B). Hence, the number of	
	carbon atoms in (B) and (C) are the same.	
	(½ mark)	

Ester (compound A) has eight C atoms. Hence, both carboxylic acid (B) and alcohol (C) must contain 4 C atoms each.

(½ mark)

Dehydration of alcohol C gives but-1-ene. Hence, C must be a straight chain alcohol, i.e butan-1-ol.

(½ mark)

Reactions:

CH₃CH₂CH₂COOCH₂CH₂CH₂CH₃ + dil. H₂SO₄

CH₃CH₂CH₂COOH + CH₃CH₂CH₂CH₂OH

(1 mark)

CH₃CH₂CH₂CH₂OH Dehydratio CH₃CH₂CH = CH₂

(1 mark)

CH₃CH₂CH₂CH₂OH CrO₃/CH₃COOH CH₃CH₂CH₂COOH

(1 mark)