BSEH Practice Paper (March 2024) (2023-24)

Marking Scheme **Model Question Paper**

SET-A

MAT	CHEMATICS CODE:	835
	ant Instructions: ● All answers provided in the Marking scheme are SUGGESTIVE	
	• Examiners are requested to accept all possible alternative correct answer(s).	1
O N	SECTION – A (1Mark × 20Q)	34.1
Q. No.	EXPECTED ANSWERS	Marks
Question 1.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. Choose the correct answer.	
Solution:	$(C) (6,8) \in R$	1
Question 2.	$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ is equal to:	
Solution:	(B) $\frac{\pi}{6}$	1
Question 3.	If $A = \begin{bmatrix} \tan \theta & \cot \theta \\ -\cot \theta & \tan \theta \end{bmatrix}$, $0 < \theta < \frac{\pi}{2}$ and $A + A' = 2I$, then the value of θ is:	
Solution:	(A) $\frac{\pi}{4}$	1
Question 4.	If a matrix A is both symmetric and skew symmetric, then	
Solution:	(B) A is a zero matrix	1
Question 5.	If the vertices of a triangle are (1, 0), (6, 0) and (4, 3), then by using determinants its area is	
Solution:	(C) $\frac{15}{2}$	1
Question 6.	If $y = x.logx$, then $\frac{d^2y}{dx^2}$ is equal to:	
Solution:	$(A) \frac{1}{X}$	1
Question 7.	The antiderivative of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$ equals:	
Solution:	(C) $\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C$	1
Question 8.	$\int e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx \text{ equals:}$	
Solution:	$(B)\frac{1}{x}e^{x}+C$	1
Question 9.	The value of $\int_{-1}^{1} x^5 dx$ is	
Solution:	(C) 0	1
Question 10.	The order of the differential equation $2x^2 \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + y = 0$ is:	
Solution:	(A) 2	1
Question 11.	Which substitution can solve a homogeneous differential equation of the form $\frac{dx}{dy} = h(\frac{x}{y})$?	
Solution:	Put v = vv	1
Question 12.	The function $f(x) = \begin{cases} \sin x - \cos x \text{ , if } x \neq 0 \\ k \text{ , if } x = 0 \end{cases}$ is continuous at $x = 0$, then find the	
Solution:	value of k.	1
orium.	$\lim_{X \to 0} f(x) = \lim_{X \to 0} (\sin x - \cos x)$ $= 0 - 1$ $= -1$ Since $f(x)$ is continuous at $x = 0$ $\therefore \lim_{X \to 0} f(x) = f(0)$ $\Rightarrow -1 = k$	
Question 13.	If a line has the direction ratios 2, -1, -2, then what are its direction cosines?	
Solution:	$\frac{\frac{2}{\sqrt{2^2+(-1)^2+(-2)^2}},\frac{-1}{\sqrt{2^2+(-1)^2+(-2)^2}},\frac{-2}{\sqrt{2^2+(-1)^2+(-2)^2}}}{\text{Downloaded from cclchapter.com}}$	1

	$\Rightarrow \frac{2}{1} \cdot \frac{-1}{1} \cdot \frac{-2}{1}$	
Question 14.	Compute $P(A B)$, if $P(B) = 0.5$, $P(A \cap B) = 0.32$.	
Solution:	Compute $\Gamma(A B)$, if $\Gamma(B) = 0.5$, $\Gamma(A B) = 0.52$.	1
	$P(A B) = \frac{P(A \cap B)}{P(B)}$	
	$=\frac{0.5}{0.32}$	
	$P(A B) = \frac{25}{16}$	
Question 15.	Two collinear vectors are always equal in magnitude. (True / False)	
Solution:	False	1
Question 16.	Two events will be independent, if $P(A'B') = [1 - P(A)][1 - P(B)]$. (True / False)	
Solution:	True	1
Question 17.	The probability of obtaining an even prime number on each die, when a pair of dice is rolled is.	
Solution:	1/6	1
Question 18.	If $\vec{a} = 2 \hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, then $ \vec{a} \times \vec{b} =$	
Solution:	$\sqrt{507}$	
Question 19.	Assertion (A): If R is the relation defined in set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b)\}$	
	: b = a +1 } then R is not an equivalence relation. Reason (R): A relation is said to be an equivalence relation if it is reflexive,	
	symmetric and transitive.	
Solution:	(A). Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation	1
	of the Assertion (A)	
Question 20.	Assertion (A): The lines are $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are	
	perpendicular, when $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0$.	
	Reason (R): The angle θ between the lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \lambda \vec{b_1}$	
	$\mu \overrightarrow{b_2}$ is given by $\cos \theta = \frac{\overrightarrow{b_1} \cdot \overrightarrow{b_2}}{ \overrightarrow{b_1} \overrightarrow{b_2} }$.	
	$ \overrightarrow{b_1} \cdot \overrightarrow{b_2} $	
Solution:	(A) . Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation	1
	of the Asse <mark>rtion (A)</mark>	
	SECTION – B (2Marks × 5Q)	
Question 21.	Let L be the set of all lines in a plane and R be the relation in L defined as R =	
	$\{(L_1, L_2): L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but neither	
	reflexive nor transitive.	
Solution:	R is not reflexive, as a line L_1 can't be perpendicular to itself, i.e., $(L_1, L_1) \notin R$.	1
		$\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2	
	\Rightarrow L ₂ is perpendicular to L ₂	
	$\Rightarrow (L_2, L_1) \in \mathbb{R}. \qquad \forall L_1, L_2 \in \mathbb{L}$	1
		$\frac{1}{2}$
	R is not transitive.	
	Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can	
	never be perpendicular to L_3 . In fact, L_1 is parallel to L_3	
	i.e., $(L_1, L_2) \in \mathbb{R}$, and $(L_2, L_3) \in \mathbb{R}$ but $(L_1, L_3) \notin \mathbb{R}$.	
	(2, 2) = 1, (2, 2) = 1.	1
OR Question 21.	Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$	
Solution:	Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos(\pi/3)$	$\frac{1}{2}$
	. 4	2
	$\cos^{-1}\left(\frac{1}{2}\right) = \pi/3$	
	Let $\sin^{-1}(\frac{1}{2}) = y$. Then, $\sin y = 1/2 = \sin(\pi/6)$	
		1
	sin-1(\frac{1}{2}) = \tilde{D}@wnloaded from cclchapter.com	2

	Now	
	$\cos^{-1}(1/2) + 2\sin^{-1}(1/2) = \pi/3 + (2\pi)/6$ $= \pi/3 + \pi/3$	1
	$\begin{vmatrix} -\pi /3 + \pi /3 \\ = (2\pi)/3 \end{vmatrix}$	
Question 22.	Find the value of a, b, c, and d from the equations:	
	$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$	
Solution:	Equate the corresponding elements of the matrices:	
	a - b = -1(1) $2a + c = 5$ (2)	
	2a - b = 0(3) $3c + d = 13$ (4)	$\frac{1}{2}$
	Equation (1) -Equation (3)	
	$-a=-1 \Rightarrow a=1$	1/2
	Equation (1) \Rightarrow 1 - b = -1 \Rightarrow b = 2	
	Equation (2) \Rightarrow 2(1) + c = 5 \Rightarrow c = 3	
	Equation (4) \Rightarrow 3(3) + d = 13 \Rightarrow d = 4	
	Therefore, $a = 1$, $b = 2$, $c = 3$ and $d = 4$	1
Question 23.	Find the value of k so that the function is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & x \le 5 \\ 3x - 5, & x > 5 \end{cases}$ at $x = 5$.	
Solution:		
	Given function is $f(x) = \begin{cases} kx + 1, & x \le 5 \\ 3x - 5, & x > 5 \end{cases}$	
	When $x < 5$, $f(x) = kx + 1$: A polynomial is continuous at each point $x < 5$	
	When $x > 5$, $f(x) = 3x-5$: A polynomial is continuous at each point $x > 5$	1
	Now $f(5) = 5k + 1$	$\frac{1}{2}$
	$\lim_{x\to 5} f(x) = \lim_{h\to 0} f(5+h) = 3(5+h) - 5 = 15 + 3h - 5$	
	$= \lim_{h \to 0} (10 + 3h) = 10 + 3(0) = 10 \qquad \dots (1)$	
	$\lim_{x \to 5} f(x) = \lim_{h \to 0} f(5 - h) = k(5 - h) + 1$	
	$= \lim_{h \to 0} (5k - hk + 1) = 5k + 1 \qquad \dots (2)$	1
	Since function is continuous, therefore, both the equations are equal, Equate both the equations and find the value of k,	
	10 = 5k + 1	4
	$ 5k = 9 \\ k = 9/5 $	$\frac{1}{2}$
Question 24.	Verify that the function $y = x \sin 3x$, is a solution of the differential equation	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 9y - 6\cos 3x = 0$	
Solution:	Given: $y = x \sin 3x$	
	Diff. w.r.t. 'x', and we get Downloaded from cclchapter.com	

	$\frac{dy}{dx} = \sin 3x + 3x \cos 3x \qquad \dots (1)$	$\frac{1}{2}$
	Again differentiate (1) w.r.t. 'x', we get	
	$\frac{d^2y}{dx^2} = 3\cos 3x + 3\left[\cos 3x + x \left(-\sin 3x\right). 3\right]$	
	On simplifying the above equation, we get	
	$\frac{d^2y}{dx^2} = 6\cos 3x - 9x\sin 3x \qquad(2)$	$\frac{1}{2}$
	Now, substitute (1) and (2) in the given differential equation, and we get the following:	
	L.H.S = $\frac{d^2y}{dx^2} + 9y - 6\cos 3x$	
	$= (6\cos 3x - 9x\sin 3x) + 9(x\sin 3x) - 6\cos 3x$	
	$= 6 \cos 3x - 9x \sin 3x + 9x \sin 3x - 6 \cos 3x$ $= 0 = R.H.S$	1
	As L.H.S = R.H.S, the given function is the solution of the corresponding differential equation.	
0.0		
OR Question 24.	Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$	
Solution:	Since $1+y^2\neq 0$, therefore separating the variables, the given differential equation can be written as	
	$\frac{\mathrm{dy}}{1+\mathrm{y}^2} = \frac{\mathrm{dy}}{1+\mathrm{x}^2} \qquad \dots (1)$	$\frac{1}{2}$
	Integrating both sides of equation (1), we get	
	$\int \frac{\mathrm{d}y}{1+y^2} = \int \frac{\mathrm{d}y}{1+x^2}$	
	$\tan^{-1}y = \tan^{-1}x + C$	$1\frac{1}{2}$
	which is the general solution of equation (1)	2
Question 25.	Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both balls are red.	
Solution:	Total number of balls = 10 black balls + 8 red balls = 18 balls	
	Probability of getting a red ball in the first draw = $\frac{8}{18} = \frac{4}{9}$	$\frac{1}{2}$
	As the ball is replaced after the first throw,	
	Probability of getting a red ball in the second draw = $\frac{8}{18} = \frac{4}{9}$ Since the two balls are drawn with replacement, the two draws are independent.	$\frac{1}{2}$
	P(both balls are red) = P(first ball is red) \times P(second ball is red)	
	Now, the probability of getting both balls red = $\frac{4}{9} \times \frac{4}{9} = \frac{16}{81}$	1
	Downloaded from cclchapter.com	

	SECTION – C (3Marks × 8Q)	
Question 26.	Let $A = \mathbf{R} - \{3\}$ and $\mathbf{B} = \mathbf{R} - \{1\}$. Consider the function $f : A \to B$ defined by	
	$f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one one and onto? Justify your answer.	
Solution:	$A = R - \{3\}$ and $B = R - \{1\}$	
	$f: A \rightarrow B$ defined by $f(x) = (x-2)/(x-3)$	
	Let $(x, y) \in A$ then $(x-2) = 1 \times (y-2)$	
	$f(x) = \frac{(x-2)}{(x-3)}$ and $f(y) = \frac{(y-2)}{(y-3)}$	
	For $f(x) = f(y)$	$\frac{1}{2}$
	$\frac{(x-2)}{(x-3)} = \frac{(y-2)}{(y-3)}$	2
	(x-2)(y-3) = (y-2)(x-3)	
	xy - 3x - 2y + 6 = xy - 3y - 2x + 6	
	-3x - 2y = -3y - 2x -3x + 2x = -3y + 2y	
	$\begin{vmatrix} -3x + 2x3y + 2y \\ -x = -y \end{vmatrix}$	
	x = y	
	Therefore, f is a one-one function.	1
	Again, $y = f(x) = \frac{(x-2)}{(x-3)}$	
	$y = \frac{(x-2)}{(x-3)}$	
	y(x-3) = x-2	$\frac{1}{2}$
	xy - 3y = x - 2 x(y - 1) = 3y - 2	
	X(y-1) = 3y - 2	
	or $x = \frac{(3y-2)}{(y-1)}$	
	(y-1)	
	Now, $f(\frac{3y-2}{y-1}) =$	
	$\Rightarrow \frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} = y$	
	f(x) = y	
	I(X) - Y	
	Therefore, f is onto function.	1
OR Question 26.	$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], x < 1, y > 0 \text{ and } xy < 1$	
Solution:	Put $x = \tan\theta$ and $y = \tan\phi$, we have	$\frac{1}{2}$
	$\tan \frac{1}{2} \left[\sin^{-1} \left(\frac{2 \tan \theta}{1 + \tan^2 \theta} \right) + \cos^{-1} \left(\frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} \right) \right]$	
	· ·	
	$= \tan \frac{1}{2} \left[\sin^{-1} \sin 2\theta + \cos^{-1} \cos 2\phi \right]$	
	$=\tan\frac{1}{2}\left[2\theta+2\phi\right]$	
	$= \tan(\theta + \phi)$	$1\frac{1}{2}$
	$\tan \theta + \tan \phi$	
	$=\frac{1-\tan\theta\tan\phi}{1-\tan\theta}$	
	Downloaded from cclchapter.com	1

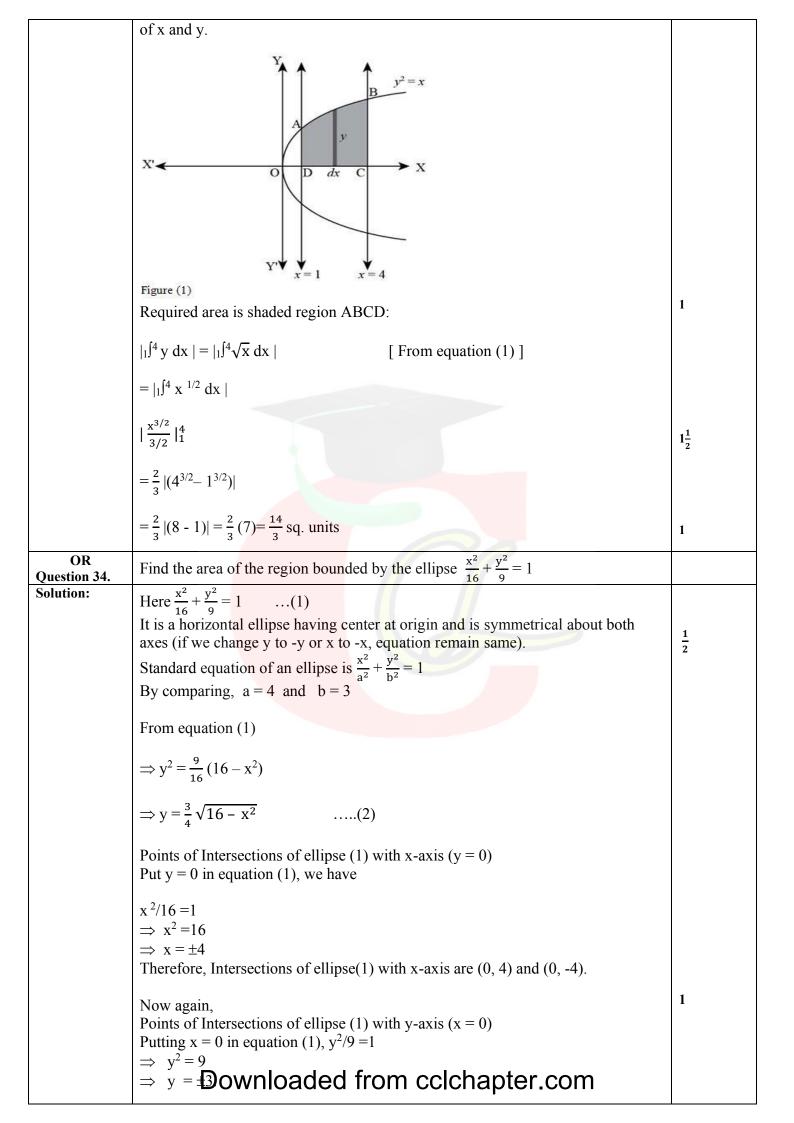
	$=\frac{x+y}{1-xy}$	
Question 27.	Find X and Y, if $2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$	
Solution:	$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} \qquad \dots (1)$	
	$3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} \qquad \dots (2)$	
	Multiply equation (1) by 2,	
	$4X + 6Y = 2\begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 8 & 0 \end{bmatrix}$ (3)	
	Multiply equation (2) by 3	
	$9X + 6Y = 3\begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & -6 \\ -3 & 15 \end{bmatrix}$ (4)	1
	Subtract equation (4) from (3)	
	$-5X = \begin{bmatrix} 4 & 6 \\ 8 & 0 \end{bmatrix} - \begin{bmatrix} 6 & -6 \\ -3 & 15 \end{bmatrix} = \begin{bmatrix} -2 & 12 \\ 11 & -15 \end{bmatrix}$	
	$X = -1/5 \begin{bmatrix} -2 & 12 \\ 11 & -15 \end{bmatrix}$	
	$X = \begin{bmatrix} 2/5 & -12/5 \\ -11/5 & 3 \end{bmatrix}$	1
	Substitute this value of X in equation (1)	
	$2\begin{bmatrix} 2/5 & -\frac{12}{5} \\ -11/5 & 3 \end{bmatrix} + 3Y = \begin{bmatrix} 2 \\ 4 & 0 \end{bmatrix}$	
	$3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 4/5 & -24/5 \\ -22/5 & 6 \end{bmatrix}$	
	$Y = 1/3 \begin{bmatrix} 6/5 & 39/5 \\ 42/5 & -6 \end{bmatrix}$	
	$Y = \begin{bmatrix} 2/5 & -8/5 \\ 14/5 & -2 \end{bmatrix}$	
Question 28.	dv	1
Solution:	Find $\frac{dy}{dx}$ of the function $y^x = x^y$ Given: $y^x = x^y$	
	$x^y = y^x$	
	Taking log on both sides $log(x^y) = log(y^x)$	
	y.log x = x.logy	1
	$\frac{d}{dx}(y.\log x) = \frac{d}{dx}(x.\log y)$	
	y. ½ + log Downloaded from cclchapter.com	

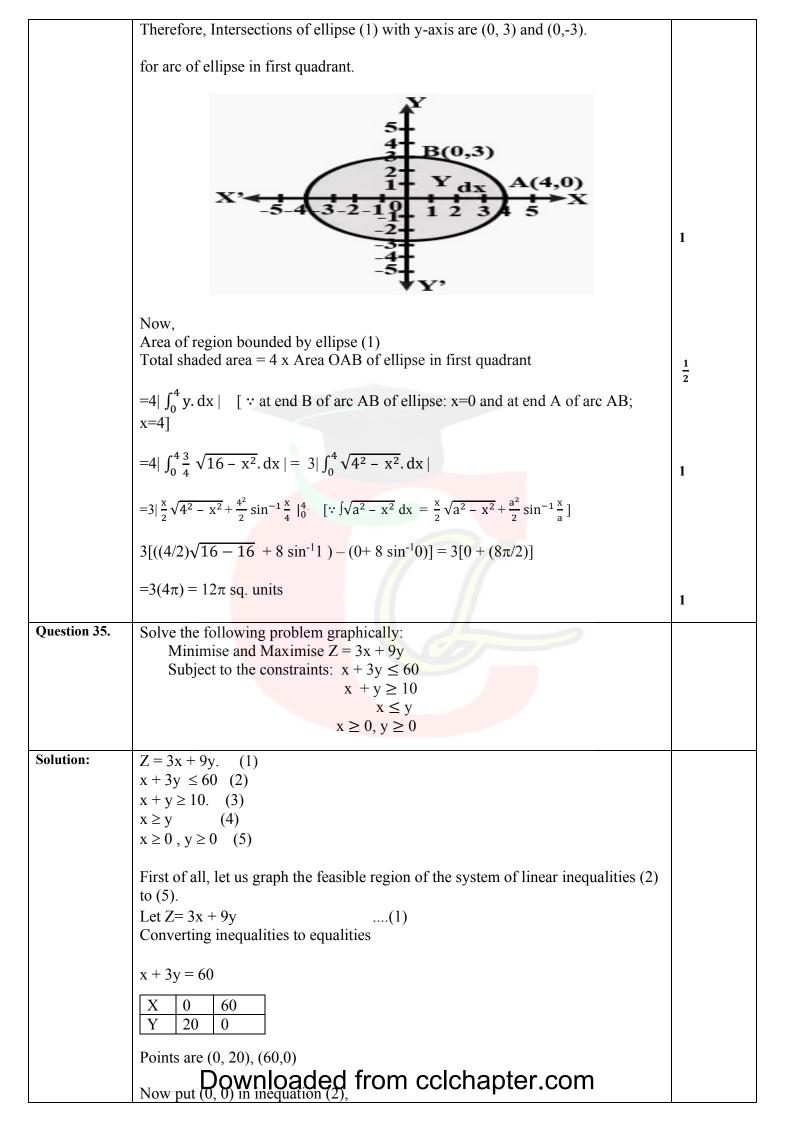
	$(\log x - \frac{x}{y}) \cdot \frac{dy}{dx} = \log y - \frac{x}{y}$	$1\frac{1}{2}$
	$\left(\frac{(y\log(x)-x)}{y}\right)\frac{dy}{dx} = \frac{(x\log(y)-y)}{x}$	
	y dx x	
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{y(x \log(y) - y)}{x(y \log(x) - x)}$	$\frac{1}{2}$
Question 29.	Find the intervals in which the function f is given by	
Solution:	$f(x)=2x^3-3x^2-36x+7$ is strictly increasing or strictly decreasing. Given function: $f(x)=2x^3-3x^2-36x+7$	
	Diff. w.r.t. 'x'	
	$f(x) = 6x^2 - 6x + 36 = 6(x^2 - x - 6)$	
	f'(x) = 6(x-3)(x+2),(1) Now for increasing or decreasing, $f'(x) = 0$	
	6(x-3)(x+2)=0	
	x - 3 = 0 or $x + 2 = 0$	
	x = 3 or $x = -2Therefore, we have sub-intervals are (-\infty, -2), (-2, 3) and (3, \infty)$	1
	Therefore, we have sub-intervals are $(-\infty, -2)$, $(-2, 3)$ and $(3, \infty)$	
	For interval $(-\infty, -2)$, picking $x = -3$, from equation (1),	
	f'(x) = (+ve)(-ve)(-ve) = (+ve) > 0	$\frac{1}{2}$
	Therefore, f is strictly increasing in $(-\infty, -2)$	2
	For interval $(-2, 3)$, picking $x = 0$, from equation (1) ,	
	f'(x) = (+ve)(-ve)(+ve) = (-ve) < 0	1_
	Therefore, f is strictly decreasing in (-2, 3).	2
	For interval $(3, \infty)$, picking $x = 4$, from equation (1),	
	f'(x) = (+ve)(+ve)(+ve) = (+ve) > 0	1_
	Therefore, is strictly decreasing in $(3, \infty)$.	2
	So, f is strictly increasing in $(-\infty, -2)$ and $(3, \infty)$.	1
	f is strictly decreasing in (-2, 3).	$\frac{1}{2}$
Question 30.	Integrate: ∫ x²logx dx	
Solution:	It is given that $I = \int x^2 .\log x dx$	
	Here by taking x as first function and x^2 as second function. Now integrating by	
	parts we get	1
	$I = \log x \int x^2 dx - \int \left\{ \frac{d}{dx} (\log x) \cdot \int x^2 dx \right\} dx$	$\frac{1}{2}$
	So we get	
	$= \log(x) \cdot \frac{x^3}{3} - \int \frac{1}{x} \cdot \frac{x^3}{3} dx$	1
	C	
	By multiplying the terms	
	$=\frac{x^3.\log x}{2} - \int \frac{x^2}{2} dx$	
	3 3 3	
	It can be written as	
	$x^3 \log x x^3$	
	$=\frac{x^3.\log x}{3} - \frac{x^3}{9} + C$	11
		$1\frac{1}{2}$
OR Question 30.	Eva เ Bอฟ้ ก่to âded from cclchapter.com	
Question 30.	201111104404 110111 0010114pto1100111	

Solution:	$I = \int_{-5}^{5} x + 2 dx$	
	We know $ x + 2 = \begin{cases} -(x + 2), & x \le -2\\ (x + 2), & x > -2 \end{cases}$	1/2
	$I = \int_{-5}^{-2} x + 2 dx + \int_{-2}^{5} x + 2 dx$	
	$I = \int_{-5}^{-2} -(x+2) dx + \int_{-2}^{5} (x+2) dx$	
	$I = \left \frac{-(x+2)^2}{2} \right _{-5}^{-2} + \left \frac{(x+2)^2}{2} \right _{-2}^{5}$	$1\frac{1}{2}$
	$I = \left(\frac{-(0)^2}{2} - \frac{-(-3)^2}{2}\right) + \left(\frac{(7)^2}{2} - \frac{(0)^2}{2}\right)$	
	$I = \frac{9}{2} + \frac{49}{2}$	
	I = 29	1
Question 31.	The two adjacent sides of a parallelogram are $2 \hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal.	
Solution:	Adjacent sides of a parallelogram are given as:	
	$\vec{a} = 2 \hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$	
	We know that, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$	
	$\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$	1
	$ \vec{a} + \vec{b} = \sqrt{(3)^2 + (-6)^2 + (2)^2}$	1
	Hence, the unit vector parallel to the diagonal is	
	$\frac{\vec{a} + \vec{b}}{ \vec{a} + \vec{b} } = \frac{3\hat{\imath} - 6\hat{\jmath} + 2\hat{k}}{\sqrt{(3)^2 + (-6)^2 + (2)^2}}$	
	$=\frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{9+36+4}}$	
	$=\frac{3\hat{\imath}-6\hat{\jmath}+2\hat{k}}{7}$	
	$= \frac{3}{7} \hat{i} - \frac{6}{7} \hat{j} + \frac{2}{7} \hat{k}$	1
	SECTION – C (5Marks × 4Q)	
Question 32.	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations	
	2x - 3y + 5z = 11 3x + 2y - 4z = -5 x + y - 2z = -3	
Solution:	$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$	
	A = 2(-4+4) + 3(-6+4) + 5(3-2) = 2(0) + 3(-2) + 5(1) = -6+5	
	=-0+5 =-1 ≠ 0; Dow nloadedsfrom cclchapter.com	1

	Find the inverse of matrix: Cofactors of matrix: $A_{11} = 0$, $A_{12} = 2$, $A_{13} = 1$	
	$A_{21} = -1$, $A_{22} = -9$, $A_{23} = -5$	
	$A_{31} = 2$, $A_{32} = 23$, $A_{33} = 13$	
	adj.A = $\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$ So,	$1\frac{1}{2}$
	$A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$	1
	Now, matrix of equations can be written as: AX=B $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$	
	And, $X = A^{-1} B$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	
	Therefore, $x = 1$, $y = 2$ and $z = 3$.	$1\frac{1}{2}$
Question 33. Solution:	Find the shortest distance between the lines l_1 and l_2 whose vector equations are $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$ $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} - \hat{\jmath} + \hat{k})$ (1) and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$ (2)	-
Solution.	and $\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$ (2)	
	Comparing (1) and (2) with $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ respectively,	
	we get	
	$\overrightarrow{a_1} = \hat{\imath} + \hat{\jmath}$, and $\overrightarrow{b_1} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$	
	$\overrightarrow{a_2} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$ and $\overrightarrow{b_2} = 3\hat{\imath} - 5\hat{\jmath} + 2\hat{k}$	1
	Therefore	1
	$\overrightarrow{a_2} - \overrightarrow{a_1} = \hat{\imath} - \hat{k}$	
	and	1/2
	$\overrightarrow{b_1} \times \overrightarrow{b_2} = (2\hat{\imath} - \hat{\jmath} + \hat{k}) \times (3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$	
	Downloaded from cclchapter.com	

	$ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} = 3\hat{i} - \hat{j} - 7\hat{k} $	$1\frac{1}{2}$
	$ \overrightarrow{b_1} \times \overrightarrow{b_2} = \sqrt{9 + 1 + 49} = \sqrt{59}$	1
	Hence, the shortest distance between the given lines is given by	
	$D = \frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2}) }{ \overrightarrow{b_1} \times \overrightarrow{b_2} } = \frac{ 3 - 0 + 7 }{\sqrt{59}} = \frac{10}{\sqrt{59}}$	1
OR Question 33.	Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$	
Solution:	The vector equation of a line passing through a point with position vector \vec{a} and parallel to \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$. It is given that, the line passes through $(1, 2, -4)$	
	So, $\vec{a} = 1\hat{i} + 2\hat{j} - 4\hat{k}$	
	Given lines are $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$	1
	It is also given that, line is perpendicular to both given lines. So we can say that the line is perpendicular to both parallel vectors of two given lines.	
	We know that, $\vec{a} \times \vec{b}$ is perpendicular to both $\vec{a} \& \vec{b}$, so let \vec{b} is cross product of parallel vectors of both lines i.e. $\vec{b} = \vec{b_1} \times \vec{b_2}$ where $\vec{b_1} = 3\hat{i} - 16\hat{j} + 7\hat{k}$ and $\vec{b_2} = 3\hat{i} - 8\hat{j} - 5\hat{k}$	2
	and Required Normal $ \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix} $	
	$=\hat{\imath}(80-56)-\hat{\jmath}(-15-21)+\hat{k}(24+48)$	1
	$\vec{b} = 24\hat{\imath} + 36\hat{\jmath} + 72\hat{k}$	
	Now, by substituting the value of \vec{a} & \vec{b} in the formula $\vec{r} = \vec{a} + \lambda \vec{b}$, we get	
	$\vec{r} = (1\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) + \lambda(24\hat{\imath} + 36\hat{\jmath} + 72\hat{k})$	1
Question 34.	Find the area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$, $x = 4$ and x-axis in the first quadrant.	
Solution:	Equation of the curve is $y^2 = x$. It is a rightward parabola having vertex at origin and symmetrical about x-axis. $x = 1$ and $x = 4$ are two straight lines parallel to y-axis. $y = \sqrt{x}$ (1) $x = 1$ and $x = 4$	
	Points of intersections of given curves At $x = 1$, $y = \sqrt{1} = \pm 1$ points are $(1, 1) (1, -1)$ At $x = 4$, $y = \sqrt{4} = \pm 2$ points are $(4, 2) (4, -2)$ \therefore points in first quadrant A(1, 1) B(4, 2) C(4, 0), D(1, 0)	$1\frac{1}{2}$
	Make a round to alded efroms to log apter coming values	





we find $0 \le 60$, which is tr Therefore area lies towards		$\frac{1}{2}$
x + y = 10		
x 0 10 y 10 0		
Points are (0, 10), (10, 0)		
Now put $(0, 0)$ in inequation	n (3),	
we find $0 \ge 10$, which is I		$\frac{1}{2}$
Therefore area lies away from	om the origin from this line.	
x - y = 0		
X 0 10 20		
y 0 10 20		
Points are (0,0),(10,10),(20	20)	
Now put $(1, 0)$ in inequation		1
we find $1 \ge 0$, which is fa		$\frac{1}{2}$
Therefore area lies away fro	om the (1, 0) from this line.	
Plot the graph for the set of	points	
70-1		
60 –		
50 –	*** ·	
30		
20 D		
10A	Coll	1
10 20 30 40 $x + y = 10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
To find maximum and mini	mum	
	is shown in the figure. Note that the region is if the corner points A, B, C and D are (0, 10), (5, 5),	$\frac{1}{2}$
(15, 15) and $(0, 20)$ respects	vely.	
Corner Point	Corresponding Value of	
	Z = 3 x + 9 y	
A (0, 10)	90	
B (5, 5)	60←Minimum	
C (15, 15)	180←Maximum	
D (0, 20)	180 (Multiple optimal solutions)	
We now find the minimum	and maximum value of 7	$1\frac{1}{2}$
	the minimum value of Z is 60 at the point $B(5, 5)$ of	
the feasible region.		
The maximum value of Z of $(15, 15)$ and $D(0, 20)$ and if	n the feasible region occurs at the two corner points C t is 180 in each case ed from cclchapter.com	

	SECTION – E (4Marks × 3Q)	
Question 36.	The proportion of a river's energy that can be obtained from an undershot water wheel is $E(x) = 2x^3 - 4x^2 + 2x$, units where x is the speed of the water wheel relative to the speed of the river. **Based on the above information answer the following:* (i) Find the maximum value of $E(x)$ in the interval $[0, 1]$. (2) (ii) What is the speed of water wheel for maximum value of $E(x)$? (1) (iii) Does your answer agree with Mill wrights rule that the speed of wheel should be about one-third of the speed of the river? (1)	
Solution:	(i) We have, $E(x) = 2x^3 - 4x^2 + 2x$ (1) Differentiating equation (1) w.r.t. x $E'(x) = 6x^2 - 8x + 2 \qquad(2)$ For maximum or minimum value of $E(x)$, $E'(x) = 0$ we have $6x^2 - 8x + 2 = 0$ $3x^2 - 4x + 1 = 0$ $(3x - 1)(x - 1) = 0$ i.e. $x = 1/3$, $x = 1$ Differentiating equation (2) w.r.t. x $E''(x) = 12x - 8$ Now, $At x = 1 \qquad E''(x) = 12(1) - 8 = 4 = +ve$ At $x = 1/3$ E''(x) = $12(1/3) - 8 = -4 = -ve$ $\Rightarrow E(x) \text{ has maximum value at } x = 1/3$ Maximum value = $E(1/3) = 2(1/3)^3 - 4(1/3)^2 + 2(1/3) = 2/27 - 4/9 + 2/3 = 8/27$	1
	(ii) Speed for the Maximum value of $E(x)$ is $\frac{1}{3}$ units. (iii) Yes	1
Question 37.	A linear differential equation is of the form $\frac{dy}{dx} + Py = Q$, where P, Q are functions of x, then such equation is known as linear differential equation. Its solution is given by $y.(IF.) = \int Q(IF.) dx + c$, where I.F.(Integrating Factor) $= e^{\int Pdx}$ Now, suppose the given equation is $xdy + ydx = x^3 dx$ Based on the above information, answer the following questions: (i) What are the values of P and Q respectively? (ii) What is the value of I.F.? (iii) Find the Solution of given equation.	

Downloaded from cclchapter.com

Solution:	(i) Given equation is x.dy + y.dx = x^3 dx Dividing on both side by dx, we have $x \frac{dy}{dx} + y = x^3$ $\frac{dy}{dx} + \frac{1}{x}y = x^2$ $\Rightarrow P = \frac{1}{x}, Q = x^2$	1
	(ii) I.F.(Integrating Factor) = $e^{\int Pdx}$	
	$= e^{\int_{x}^{1} dx}$ $= e^{\log x}$	1
	= x	
	(iii) Solution of given equation is $y.(IF.) = \int Q(IF.) dx + c$	
	$y(x) = \int x^{2}(x) dx + c$	
	$xy = \int x^3 dx + c$	
	$xy = \frac{x^4}{4} + c$	2
Question 38.	Ratna has two boxes I and II. Box I contains 3 red and 6 black balls. Box II contains 5 red and 5 black balls. Her friend Shivani selects one of the two boxes randomly and draws a ball out of it. The ball drawn by Shivani is found to be red. Let E ₁ , E ₂ and A denote the following events: E ₁ : Box I is selected by Shiavni. E ₂ : Box II is selected by Shiavni. A: Red ball is drawn by Shivani. (a) Find P(E ₁) and P(E ₂) (b) Find P(A E ₁) and P(A E ₂) (c) Find P(E ₂ A) (2)	
Solution:	(a) $P(E_1)$: Probability of selecting Box I by Shiavni = $\frac{1}{2}$ $P(E_1)$: Probability of selecting Box I by Shiavni = $\frac{1}{2}$	1
	(b) $P(A E_1)$ = Probability of selecting a red ball when box I has been already selected = $\frac{3}{9}$ $P(A E_2)$ = Probability of selecting a red ball when box II has been already selected = $\frac{5}{10}$	1
	(c) P(E ₂ A) = Probability that a red ball is drawn from the box II By Bayes' Theorem	
	$P(E_2 \mid A) = \frac{P(E_2).P(A \mid E_2)}{P(E_1).P(A \mid E_1) + P(E_2).P(A \mid E_2)}$ Downloaded from cclchapter.com	

$P(E_2 \mid A) = \frac{\frac{1}{2} \cdot \frac{5}{10}}{\frac{1}{2} \cdot \frac{3}{9} + \frac{1}{2} \cdot \frac{5}{10}}$	
$P(E_2 \mid A) = \frac{\frac{1}{4}}{\frac{1}{6} + \frac{1}{4}}$	
$P(E_2 \mid A) = \frac{\frac{1}{4}}{\frac{4+6}{24}} = \frac{1}{4} \times \frac{24}{10} = \frac{3}{5}$	2

