BSEH PRACTICE PAPER (March 2024)

CLASS: 12th (Sr. Secondary)							Code: D
Roll No.							

PHYSICS [Hindi and English Medium] ACADEMIC / OPEN

[Time allowed: 3 hours] [Maximum Marks: 70]

सामान्य निर्देश:

- 1. प्रश्न-पत्र में कुल 35 प्रश्न हैं।
- 2. सभी प्रश्न अनिवार्य है।
- 3. यह प्रश्न-पत्र पाँच खण्डों में विभाजित है। खंड-A, खंड-B, खंड-C, खंड-D और खंड-E।
- 4. खंड-A में अठारह (1-18) वस्तुनिष्ठ प्रश्न है, प्रत्येक प्रश्न 1 अंक का है।
- 5. खंड-B में सात (19-25) अ<mark>ति लघु</mark> उत्तरात्मक प्रश्न है। प्रत्येक प्रश्न 2 अंक का है।
- 6. खण्ड-C में पाँच (26-30) लघु उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न 3 अंक का है।
- 7. खण्ड-D में दो (31-3<mark>2) केस अध्ययन प्र</mark>श्न है, प्रत्येक प्रश्न 4 अंक का है।
- 8. खण्ड-E में तीन (33-35) दीर्घ उत्तरात्मक प्रश्न हैं, प्रत्येक प्रश्न 5 अंक का है।
- 9. कोई समग्र विकल्प <mark>नहीं है। यद्यपि खण्ड</mark>-A, B, C, D और E में आंतरिक विकल्प दिए है। इन सब प्रश्नों में आपको एक विकल्प चुनना है।
- 10. अंक गणक का प्रयोग वर्जित है।

General Instruction:

- 1. There are 35 questions in all.
- **2.** All questions are Compulsory.
- 3. This question paper is divided into five sections. A, B, C, D and E.
- **4.** Section-A consists of eighteen (1-18) objective type questions each of 1 mark.
- **5.** Section-B consists of seven (19-25) very short answer type questions each of 2 marks.
- **6.** Section-C consists of five (26-30) short answer type questions each of 3 marks.
- 7. Section-D consists of two (31-32) case study type questions each of 4 marks.
- **8.** Section-E consists of three (33-35) long answer type questions each of 5 marks.
- **9.** There is no overall choice however an internal choice has been provided in Section B, C, D and E. You have to attempt only one of the given choices in such questions
- **10.** Use of calculator is not permitted.

SECTION A

1.	दरी / के पथकन			
	c - c	तथा $+q$ आर $-q$ आवशा	स बना काइ विद्युत	द्विध्रुव किसी एकसमान विद्युत क्षेत्र
	\overrightarrow{E} में स्थायी साम्य	ावस्था में है। इस द्विध्रुव की	स्थिर वैद्युत स्थितिज	ऊर्जा है। 1
	(a) q LE	(b) शून्य	(c) - q LE	(<i>d</i>) –2 <i>q LE</i>
	_	ium in a uniform elect	_	arated by a distance L is in ectrostatic potential energy
	(a) q LE	(b) zero	(c) - q LE	(<i>d</i>) −2 <i>q LE</i>
2.	नीचे दिए गए किस कम होगा?	न वर्ण के प्रकाश के लिए	काँच के प्रिज्म के अल	पतम विचलन कोण का मान सबसे 1
	(a) लाल वर्ण	(b) नीला वर्ण	(c) पीला वर्ण	(d) हरा वर्ण
	For a glass pri of:	sm, the angle of mini	mum deviation w	vill be smallest for the light
	(a) red colour	(b) blue colour	(c) yellow colou	<mark>r (</mark> d) green colour
3.		-		ऊर्जाओं के फोटॉन क्रमागत आपतन मों की गतिज ऊर्जाओं का अनुपात
	होगा-			1
	(a) 1:2	(b) 1:1	(c) 1:3	(d) 1 · 1
	, ,	(6) 1.1	(c) 1.5	(u) 1.4
	of work fund	ergies 1 eV and 2 eV a	re successively in atio of kinetic	cident on a metallic surface
	of work fund photoelectrons	ergies 1 eV and 2 eV a etion 0.5 eV. The r	re successively in atio of kinetic of be:	cident on a metallic surface energy of most energetic
4.	of work fund photoelectrons (a) 1:2	ergies 1 eV and 2 eV action 0.5 eV . The resin the two cases will $(b) \ 1:1$ ध R से संयोजित आंतरिक	re successively ineation of kinetic of be: (c) 1:3	cident on a metallic surface energy of most energetic
4.	of work fund photoelectrons (a) 1:2 किसी बाह्य प्रतिरो कर सकता है, जब	ergies 1 eV and 2 eV action 0.5 eV . The resin the two cases will $(b) \ 1:1$ ध R से संयोजित आंतरिक	re successively in atio of kinetic of be: (c) 1:3 प्रतिरोध r का कोई से	cident on a metallic surface energy of most energetic (d) 1:4 ल अधिकतम धारा की आपूर्ति तब 1
4.	of work fund photoelectrons (a) 1:2 किसी बाह्य प्रतिरो कर सकता है, जब (a) $R = r$ A cell of inter-	ergies 1 eV and 2 eV action 0.5 eV. The resin the two cases will (b) 1:1 et R the triangled R triangled R the triangled R the triangled R the triangled R the triangled R tri	re successively ineation of kinetic elements be: (c) $1:3$ प्रतिरोध r का कोई से r	cident on a metallic surface energy of most energetic (d) 1:4 ल अधिकतम धारा की आपूर्ति तब 1
4.	of work fund photoelectrons (a) 1:2 किसी बाह्य प्रतिरो कर सकता है, जब (a) $R = r$ A cell of intersupply maxim	ergies 1 eV and 2 eV a etion 0.5 eV. The resin the two cases will (b) 1:1 even R the triangle R trian	re successively in atio of kinetic of be: (c) $1:3$ प्रतिरोध r का कोई से (c) $R = \frac{r}{2}$ nected across an	cident on a metallic surface energy of most energetic (d) 1:4 ल अधिकतम धारा की आपूर्ति तब 1 (d) R = 0 external resistance R can
	of work fund photoelectrons (a) 1:2 किसी बाह्य प्रतिरो कर सकता है, जब (a) $R = r$ A cell of inter- supply maxima (a) $R = r$	ergies 1 eV and 2 eV a ction 0.5 eV. The rin the two cases will (b) 1:1 e R से संयोजित आंतरिक (b) $R > r$ rnal resistance r contum current when	re successively ineation of kinetic of be: (c) $1:3$ प्रतिरोध r का कोई से (c) $R = \frac{r}{2}$ nected across an (c) $R = \frac{r}{2}$	cident on a metallic surface energy of most energetic (d) 1:4 ल अधिकतम धारा की आपूर्ति तब (d) $R=0$ external resistance R can (d) $R=0$

	at a point is called
	(a) Resistivity (b) Conductivity (c) Resistance (d) Mobility
6.	क्यूरी ताप से अधिक ताप पर-
	(a) लोह-चुंबकीय पदार्थ प्रतिचुम्बकीय बन जाता है।
	(b) लोह-चुंबकीय पदार्थ अनुचुम्बकीय बन जाता है।
	(c) अनुचुम्बकीय पदार्थ लोह-चुंबकीय बन जाता है।
	(d) चुंबकीय क्षेत्र में परिवर्तन नहीं हो रहा है।
	Above curie temperature, a
	(a) ferromagnetic material becomes diamagnetic(b) ferromagnetic material becomes paramagnetic
	(c) paramagnetic material becomes ferromagnetic
	(d) paramagnetic material becomes diamagnetic
7.	विस्थापन धारा तभी अस्तिव में आती है जब
	(a) विद्युत-क्षेत्र परिवर्तित हो रहा होता है।
	(b) चुम्बकीय क्षेत्र परिवर्तित हो रहा होता है।
	(c) विद्युत-क्षेत्र में <mark>परिवर्तन नहीं हो रहा</mark> है।
	(d) चुम्कीय क्षेत्र <mark>मं परिवर्तन नहीं हो रहा है।</mark>
	Displacement current exists only when
	 (a) electric field is changing (b) magnetic field is changing (c) electric field is not changing (d) magnetic field is not changing
0	किसी इलेक्ट्रॉन को विराम से किसी ऐसे क्षेत्र में मुक्त किया गया है जहाँ एकसमान विद्युत और
ο.	चुम्बकीय क्षेत्र एक दूसरे के समान्तर कार्यरत है। यह इलेक्ट्रान:
	(a) किसी सरल रेखा में गति करेगा (b) किसी वृत में गति करेगा
	(c) स्थिर रहेगा (d) सर्पिलाकार पथ में गित करेगा
	An electron is released from rest in a region of uniform electric and magnetic fields acting parallel to each other. The electron will:
	(a) move in a straight line (b) move in a circle
	(c) remain stationary (d) move in helical path
9.	जब दो नाभिक $(A \le 10)$ एक दूसरे के साथ संगिलत होकर एक भारी नाभिक बनाते हैं, तो 1
	(a) बंधन ऊर्जा प्रति न्यूक्लिऑन में वृद्धि होती है।
	(b) बंधन ऊर्जा प्रति न्यूक्लिऑन में कमी होती है।

	(c) बंधन ऊर्जा प्रति(d) कुल बंधन ऊज	न्यूक्लिऑन में कोई परिवर्त िघट जाती है।	र्नन नहीं होता।		
	When two nucl (a) binding ene (b) binding ene (c) binding ene	ei $(A \le 10)$ fuse togel rgy per nucleon incre rgy per nucleon decre rgy per nucleon does g energy decreases	ases eases	vier nucleus, the	
10.	•	ह व्यापाड में नेट धारा	होती है-		1
	, , -	शि वाहकों के विसरण के व			
	· /	वाहकों के अपवाह के का		2 4.	
	() 3(म्सरण और अपवाह धाराएँ ।।वेश वाहकों मे कोई भी स			
		, in a $p-n$ junction diod			
	(b) due to drift(c) zero as diffu	sion of majority charg of m <mark>ajori</mark> ty charge can usion and drift curren harge carrier cross the	rrier ts are equal and o	pposite	
11.		अर्धचालक में दाता ऊर्जा स			1
	(a) ऊर्जा अंतराल व (c) संयोजकता बैण्ड		(b) चालन बैण्ड के (d) चालन बैण्ड में	ठीक नीचे	
	In a <i>n</i> -type sem	iconductor, the donor	r energy level lies-	-	
		e of the energy gap		e conduction band	
10		ne valence band	(a) in the conduc	ction band	1
12.	1	त विद्युत फ्लक्स होता है-	$\Lambda\pi$		1
	$(a) \ \frac{1}{\in_0}$	(b) 4π	$(c) \ \frac{4\pi}{\epsilon_0}$	$(d) \in_{0}$	
	The electric flux	x emerging out form l	IC charge is		
	$(a) \ \frac{1}{\epsilon_0}$	(b) 4π	$(c) \ \frac{4\pi}{\epsilon_0}$	$(d) \in_{\scriptscriptstyle 0}$	
13.	किसके अनुक्रमानुपा	ती होती है?	वेक्त कक्षा में इलेक्ट्रॉन	की कुल ऊर्जा निम्नलिखित में	ंसे 1
	(a) n	(b) $\frac{1}{n}$	(c) n^2	$(d) \ \frac{1}{n^2}$	

	In Bohr's mod orbit is propor		om, the total energy o	If the electron in n th discrete					
	(a) n	(b) $\frac{1}{n}$	(c) n^2	$(d) \ \frac{1}{n^2}$					
14.	किसी प्रत्यावर्ती ध	ारा (a.c.) परिपथ में,	अनुयुक्त वोल्टता और प्रवाहि	हत धारा क्रमश: $E=E_0 \sin \omega t$ और					
	$I = I_0 \sin(\omega t +$	$\frac{\pi}{2}$) है। इस परिपथ में	एक चक्र में औसत उपयुक	त शक्ति क्या होगी। 1					
	(a) $E_v I_v$	(b) zero	$(c) \infty$	(d) -1					
	In an a.c. circu	uit the applied vo	ltage and flowing cur	rent are $E = E_0 \sin \omega t$ and $I =$					
	$I_0 \sin (\omega t + \frac{\pi}{2})$) respectively. Wh	nat is the average pow	ver consumed in one cycle in					
	this circuit?								
	, , , ,	(b) zero	$(c) \infty$						
				और दूसरा कारण (R)। नीचे दिए					
			से सहीं उत्तर चुनिए।						
	(a) A और R दे	ानों स <mark>त्य है, और R,</mark> A	A की सही व्याख्या है।						
	(b) A और R द	ानों सत्य है, और R, A	A की सही व्याख्या नही <mark>ं है।</mark>						
	(c) A सत्य है, प	ारन्तु R असत्य है।							
	(d) A असत्य है,	और R भी असत्य है	1						
	Directions (15-18): Two statements are given one labelled Assertion (A) and								
			ect t <mark>he correct answe</mark> r	from codes (a) , (b) , (c) and					
	(d) given belo			C. A.					
			is correct explanation						
	(<i>v</i>) Both A and (<i>c</i>) A is true by		is not the correct exp	lanation of A.					
	` '	nd R is also false.							
15.	-		ह एक छोटी गुहा की जाँच	के लिए अवतल दर्पण का उपयोग					
	कारण (R)	: एक दंत चिकित्स	क किसी वस्त की आविष्	र्श्वत, आभासी छवि बनाने के लिए					
	ν=-/	अवतल दर्पण का उ	-	1					
	Assertion (A)	: A dentist uses	a concave mirror to ex	camine a small cavity.					
	Reason (R)	: A dentist uses virtual image o		so as to form a magnified,					
16.	अभिकथन (A)	ः संधारित्रों के श्रेणीक्र	ज्म संयोजन में प्रत्येक संधानि	त्र पर आवेश समान होता है।					
	कारण (R)	: ऐसे संयोजन में आ	वेश केवल एक मार्ग पर नह	ीं चल सकता। 1					
				Page 5					

Assertion (A): In a series combination of capacitors, charge on each capacitor is same.

Reason (R): In such a combination, charge can not move only along one route.

17. अभिकथन (A) : एक विद्युतरोधी तार को मोडने से उसका प्रतिरोध बढ़ जाता है।

कारण (R) : मोड़ने से तार में इलेक्ट्रॉन का अपवाह वेग घट जाता है। 1

Assertion (A): The bending of an insulated wire increases the resistance of wire.

Reason (R) : The drift velocity of electrons in bent wire decreases.

18. अभिकथन (A) : अल्फा कणों के बड़े कोण पर प्रकीर्णन से परमाणु नाभिक की खोज हुई।

कारण (R) : परमाणु का संपूर्ण धनात्मक आवेश केन्द्रीय कोर में केंन्द्रित होता है। 1

Assertion (A): Large angle scattering of alpha particles led to the discovery of

atomic nucleus.

Reason (R) : Entire positive charge of atom is concentrated in the central core.

SECTION B

19. दाता और ग्राही स्तरों को चित्रित करते हुए तापमान T > 0 K पर n-प्रकार और p-प्रकार के अर्धचालकों के ऊर्जा बैण्ड आरेख खींचिए। इन स्तरों के महत्व का उल्लेख कीजिए।

Draw energy band diagrams of n-type and p-type semiconductors at temperature T > 0 K, depicting the donor and acceptor energy levels. Mention the significance of these levels.

OR

किसी p-n संधि में हासी क्षेत्र बनने की व्याख्या कीजिए।

Discuss the formation of depletion layer in *p-n* junction diode.

20. नीचे दी गई विद्युत-चुम्बकीय विकिरण को उनकी आवृतियों के आरोही क्रम में व्यवस्थित कीजिए।

X-किरणें, सूक्ष्मतंरगें, गामा किरणें, रेडियो-तरंगें

सूक्ष्मतरंगों के दो उपयोग लिखिए।

2

Arrange the following electromagnetic radiation in the ascending order of their frequencies:

X-rays, microwaves, gamma rays, radiowaves

Write two uses of microwaves.

- 21. (i) लेंस की क्षमता के SI मात्रक की परिभाषा लिखिए।
 - (ii) कोई समतल उत्तल लेंस 1.5 अपवर्तनांक के कांच का बना है। इसके उत्तल पृष्ठ की वक्रता त्रिज्या 25 cm है। इस लेंस की फोकस दूरी परिकलित कीजिए।
 - (i) Define the SI unit of power of a lens.
 - (*ii*) A plano convex lens made of glass of refractive index 1.5. The radius of curvature of the convex surface is 25 cm. Calculate the focal length of the lens.
- 22. संधारित्र में संचित ऊर्जा के लिए व्यंजक निकालिए।

2

Derive expression for energy stored in a capacitor.

OR

 $12~{
m cm}$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7}{
m C}$ का आवेश एकसमान रूप से वितिरत है।

- (a) गोले के अंदर
- (b) गोले के ठीक बाहर, किसी बिन्दु पर विद्युत-क्षेत्र क्या होगा?

A spherical conductor of radius 12 cm has a charge of 1.6×10^{-7} C distributed uniformly on its surface. What is the electric field

- (a) inside the sphere
- (b) just outside the sphere
- 23. ओम के नियम की सीमाएँ समझाइए?

2

Explain the limitations of ohm's law?

24. छड़ चुम्बक का एक धारावाही परिनालिका की तरह व्यवहार होता है। कैसे?

2

Bar magnet acts as an equivalent solenoid. How?

25. किरणों को $\pi/2$ तथा π पर मोड़ने के लिए या प्रतिबिंब के साइज में परिवर्तन किए बगैर उलटने के लिए प्रिज्मों में पूर्ण आंतरिक परावर्तन का उपयोग कैसे किया जाता है?

How total internal reflection is used to bend rays by 90° and 180° or to invert image without changing its size in prisms?

SECTION C

26. परावर्ती दूरदर्शक (कैसेग्रेन) का व्यवस्था आरेख खिचिंए। अपवर्तक दूरदर्शक की तुलना में इसके दो लाभ लिखिए।

Draw Schematic diagram of a reflecting telescope (cassegrain). Write its two advantages over refracting telescope.

OR

यंग के किसी द्वि-झिरी प्रयोग में, जिसमें 600 nm तरंग दैर्ध्य के प्रकाश का उपयोग किया गया है, झिरियों के बीच पृथकन 0.8 mm है और पर्दे पर झिरियों के तल से 1.6 m की दूरी पर रखा गया है। (i) फ्रिन्ज चौड़ाई

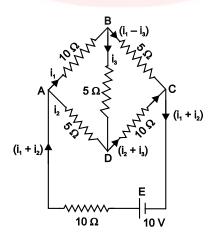
- (ii) केन्द्रीय उच्चिष्ठ से (a) तीसरे निग्निष्ठ और (b) पाँचवें उच्चिष्ठ की दूरी परिकलित कीजिए। In a Young's double slit experiment using light of wavelength 600 nm, the slit separation is 0.8 mm and the screen is kept 1.6 m from the plane of the slits. Calculate:
- (i) the fringe width
- (ii) the distance of (a) third minimum and (b) fifth maximum from the central maximum.
- 27. श्रेणीबद्ध LCR परिपथ पर प्रयुक्त ac वोल्टता की प्रतिबाधा के लिए अभिव्यक्ति प्राप्त करें। प्रतिबाधा त्रिभुज आरेख भी खिंचिए।

Derive an expression for impedance of an a.c. circuit containing series LCR. Also draw the impedance triangle.

OR

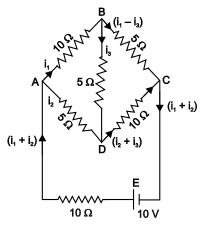
श्रेणी अनुनाद परिपथ <mark>की आवृति की गणना करें। इस सर्किट के Q-का</mark>रक का सूत्र निकालिए।

Calculate the frequency of series resonance circuit. Find out the formula of Q-factor of this circuit.


28. किसी ठोस में ऊ<mark>र्जा बैंड (संयोजकता</mark> बैंड और चालन बैंड) कैसे बनते हैं?

How energy bands (conduction band and valance band) are formed in solids?

29. वैद्युत द्विध्रुव की विषुवतीय रेखा पर विद्युत क्षेत्र के लिए व्यंजक प्राप्त करें।


Derive an expression for electric field at a point on the equitorial line of an electric dipole.

30. चित्र में दर्शाए नेटवर्क की प्रत्येक शाखा में प्रवाहित धारा ज्ञात कीजिए।

3

Calculate the current in each branch of the network show in fig.

SECTION D (CASE STUDY)

31. विद्युत ऊर्जा का लंबी दूरियों तक, बड़े पैमाने पर संप्रेषण एवं वितरण करने के लिए ट्रांसफॉमरों का उपयोग किया जाता है। जिन्त्र की निर्गत वोल्टता की उच्चियत किया जाता है। (तािक धारा कम हो जाती है। और परिणामस्वरूप I^2R हािन घट जाती है।) इसकी लंबी दूरी के उपभोक्ता के समीप स्थित क्षेत्रीय उप-स्टेशन तक संप्रेषित किया जाता है। वहाँ वोल्टता को अपचियत किया जाता है। वितरण उप-स्टेशनों पर एवं खंभों पर फिर से अपचियत करके 240 V की शिक्त आपूर्ति हमारे घरों को पहुँचायी जाती है।

9					
<i>(i)</i>	एक ट्र	ट्रांसफ <mark>ॉर्मर किस सिद्धांत प</mark> र कार्य व	<mark>क</mark> रता	है। 1	
	(a)	कनवर्टर	(b)	इन्वर्टर	
	(c) 3	अन्योन्य प्रेरण	(<i>d</i>)	स्व-प्रेरण	
(ii)	वह म	गत्रा जो किसी <mark>ट्रांसफार्मर में अपरि</mark>	वर्तित	रहती है।	
	(a)	वोल्टता	(b)	विद्युत धारा	
	(c) 3	आवृत्ति	(d)	कोई भी नहीं	
(iii)	ट्रांसफ	गर्मर कोर के लिए सर्वोत्तम सामग्री	है-	1	
	(a) 3	स्टेनलेस स्टील	(b)	माइल्ड स्टील	
	(c) ⁷	कठोर स्टील	(d)	कोमल लौह	
(iv)	एक द	ट्रांसफॉर्मर में प्राथमिक कुंडली में	140	तथा द्वितीयक कुंडली में 280 फेरे हैं। यदि प्राथमिक	₹
	में 44	A धारा है, तो द्वितीयक में धारा-		1	
	(a) 4	4A	(b)	2A	

(d) 10A

(c) 6A

किसी भी ट्रांसफॉर्मर का कोर स्तरित होता है ताकि-

- (a) भंवर धाराओं के कारण होने वाली ऊर्जा हानि को कम किया जा सके
- (b) इसे हल्का बनाएं
- (c) इसे ठोस और मजबूत बनाएं
- (d) द्वितीयक वोल्टेज बढ़ाएँ

The large scale transmission and distribution of electrical energy over long distance is done with the use of transformer. The voltage output of the generator is stepped-up (so that current is reduced and consequently the I^2R loss is cut down). It is then transmitted over long distances to an area sub-station near the consumers. There the voltage is stepped down. It is further stepped down at distributing sub-stations and utility poles before a power supply of 240 V reaches our home.

- (*i*) A transformer works on the principle of : 1 (a) Converter (b) Inverter (d) Self induction (c) Mutual Induction (ii) Quantity that remains unchanged in a transformer is 1 (a) voltage (b) current (c) frequency (d) none of these (iii) The best material for the core of a transformer is 1 (a) stainless steel (b) mild steel (c) hard steel (d) soft iron (iv) In a transformer, number of turns in the primary is 140 and that in
- secondary is 280. If current in primary is 4A, then that in the secondary is 1
 - (a) 4A

(b) 2A

(c) 6A

(d) 10A

OR

The core of any transformer is laminated, so as to:

- (a) reduce the energy loss due to eddy currents
- (b) make it light weight
- (c) make it robust and strong
- (d) increase the secondary voltage
- 32. प्रकाश-विद्युत प्रभाव ने इस विलक्षण तथ्य को प्रमाणित किया कि प्रकाश किसी द्रव्य के साथ अन्योन्य क्रिया में इस प्रकार व्यवहार करता है जैसे यह क्वांटा अथवा ऊर्जा के पैकेट hv का बना हो। क्या प्रकाश ऊर्जा के क्वांटम को किसी कण से संबद्ध किया जा सकता है?

आंइसटाइन एक महत्वपूर्ण परिणाम पर पहुँचे कि प्रकाश क्वांटम को संवेग $(\hbar v/c)$ से संबद्ध किया जा सकता है। इस कण को बाद में फोटॉन का नाम दिया गया। प्रत्येक फोटॉन की चाल c है। फोटॉन विद्युत उदासीन होते हैं और विद्युत तथा चंबकीय क्षेत्रों के द्वारा विश्लेपित नहीं होते।

. : 3	- (
<i>(i)</i>	निम्नलि	खित में से कौन प्रकाश की व	ज्णीय '	प्रकृति को दर्शाता है?	-
	(a) प्रव	काश−विद्युत प्रभाव	(b)	व्यतिकरण	
	(c) अ	पवर्तन	(<i>d</i>)	घ्रुवण	
(ii)	फोटॉन	के बारे में से कौन सा कथन	गलत '	है?	-
	(a) फो	ोटॉन कोई दवाब नहीं डालते हें	ੈਂ। (b)	फोटॉन का संवेग $\frac{hv}{c}$ है।	
	(c) प्रव	भाश की ऊर्जा hv है।	(d)	फोटॉन विद्युत उदासीन होते हैं।	
(iii)	एक फो	टॉन का शेष द्रव्यमान है-			1
	(a) $\frac{hr}{c}$	<u>v</u>	(b)	$\frac{hv}{c^2}$	
	(c) $\frac{h^{2}}{\lambda}$	<u>v</u>	(d)	zero	
(iv)	फोटॉन-	कण <mark>टकराव (जैसे फोट</mark> ॉन-इल	नेक्ट्रान	टकराव) में <mark>निम्नलि</mark> खित में से कौन संरक्षित नहीं	हो
	सकता?				1
	(a) कु	ল <mark>কৰ্</mark> जা	(b)	फोटोनों की संख्या	
	(c) कु	ल संवेग	` ′	(a) और (b) दोनों	
			OR		
	10^{12}Hz	z आवृति को विकिरण ऊर्जा व	के 6.6	2 J में फोटॉनों की संख्या निकालिए।	
	दिया गर	या $h = 6.62 \times 10^{-34} \mathrm{J s}$			
with energ Eines assoc photo defle	matter gy hv. stein ar siated v on mov cted by	behaved as if it was really the light quantum crived at the important with momentum (hv/c) wes with speed of light relectric and magnetic for	nade of entering		of e? oe ch ot
(1)		notoelectric effect	_	nows particle nature of light? Interference	1
	` '	efraction	` '	Polarization	

1

(a) photons exert no pressure (b) Momentum of photon is $\frac{hv}{c}$

(ii) Which of the following statement about photon is incorrect?

(c) Energy of photon is hv

(d) Photons are electrically neutral

	(iii)	The rest mass of photon i	s			1
		(a) $\frac{hv}{c}$	(b)	$\frac{hv}{c^2}$		
		(c) $\frac{hv}{\lambda}$	(<i>d</i>)	zero		
	(iv)	In a photon-particle colli the following may not be		•	ctron collision), which	h of 1
		(a) Total energy	(b)	No. of photons		
		(c) Total momentum	(d) OR	both (a) and (b)		
		Calculate number of pho Hz.		62 J of radiatior	energy of frequency	10 ¹²
		Given $h = 6.62 \times 10^{-34} \text{ Js.}$				
			SEC	TION E		
33.	गाइगर-	-मार्सडन प्रयोग का <mark>व्यवस्थात्मक</mark>	निरूपण की	ोजिए। अल्फा कणों	के बिखरने से हुए प्रेक्षणों	को
	लिखिए	ए। समीपतम दूरी <mark>क्या है इसके</mark> लि	गए सूत्र लिनि	खए।		5
	the o	v a Schematic arrangement observations of scattering oach and write down its fo	g of <mark>al</mark> ph	_	*	
	(i) ना	भिकीय विखंडन और नाभिकीय स	मंलयन <mark>का</mark> उ	उदाहरण देकर अंतर	स्पष्ट करें?	3
	` '	ोर के क्वांटमीकरण के द्वितीय आ				2
	, ,	ith examples differentiate				
		How De Broglie explains B				
34		्र हंडली गैल्वेनोमीटर का चित्र बनाव		•		5

34. ₹

Explain principle, construction and working of moving coil galvanometer by drawing its diagram.

OR

एक समान चुंबकीय क्षेत्र में आयताकार विद्युत धारा पाश पर लगने वाले बल आघूर्ण के लिए अभिव्यक्ति प्राप्त करें।

Derive expression for torque on a rectangular current loop in a uniform magnetic field.

- 35. (i) अवतल दर्पण के लिए दर्पण सूत्र प्राप्त करें जब बिंब वास्तविक हो?

3

- (ii) कोई वस्तु 15 cm वक्रता त्रिज्या के अवतल दर्पण से 10 cm दूरी पर रखी है। प्रतिबिंब की स्थिति प्रकृति तथा आवर्धन परिकलित कीजिए। 2
- (i) Derive mirror formula for concave mirror when image formed is real?
- (ii) An object is placed at 10 cm in front of a concave mirror of radius of curvature 15 cm. find the position, nature and magnification of the image.

OR

प्रकाश अपवर्तन क्या है? सिद्ध करे
$$\frac{\mu_2}{-u} + \frac{\mu_1}{v} = \frac{\mu_1 - \mu_2}{R}$$

जब उत्तल गोलाकार अपवर्तक सतह पर अपवर्तन सधन से विरल माध्यम की ओर होता है। 5

What is refraction of light? Prove that $\frac{\mu_2}{-u} + \frac{\mu_1}{v} = \frac{\mu_1 - \mu_2}{R}$ when refraction occurs form denser to rarer medium at a convex spherical refracting surface.