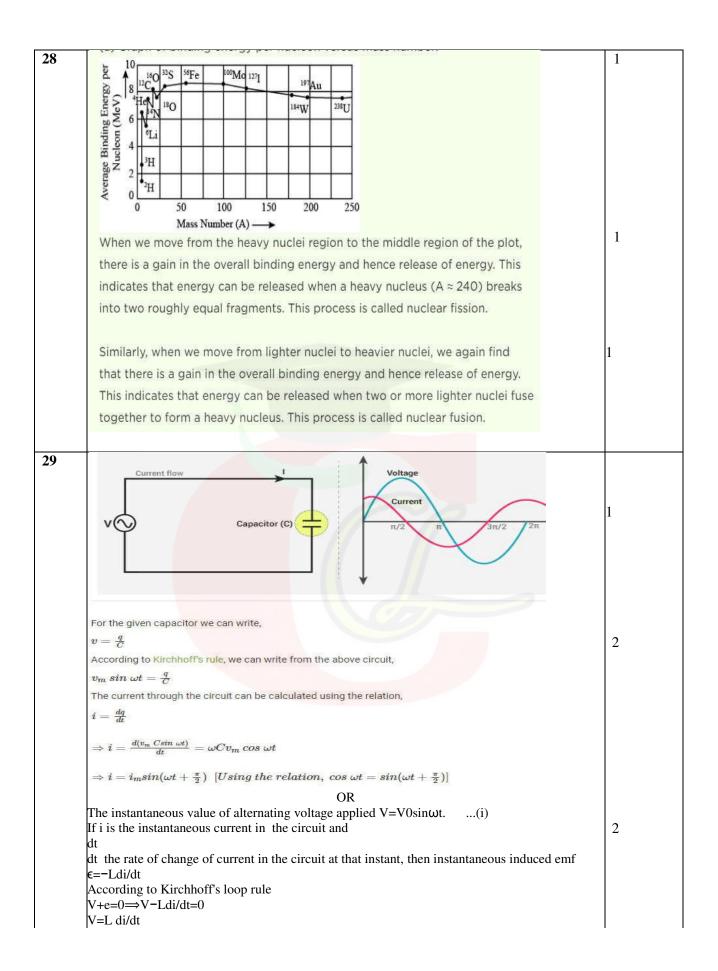
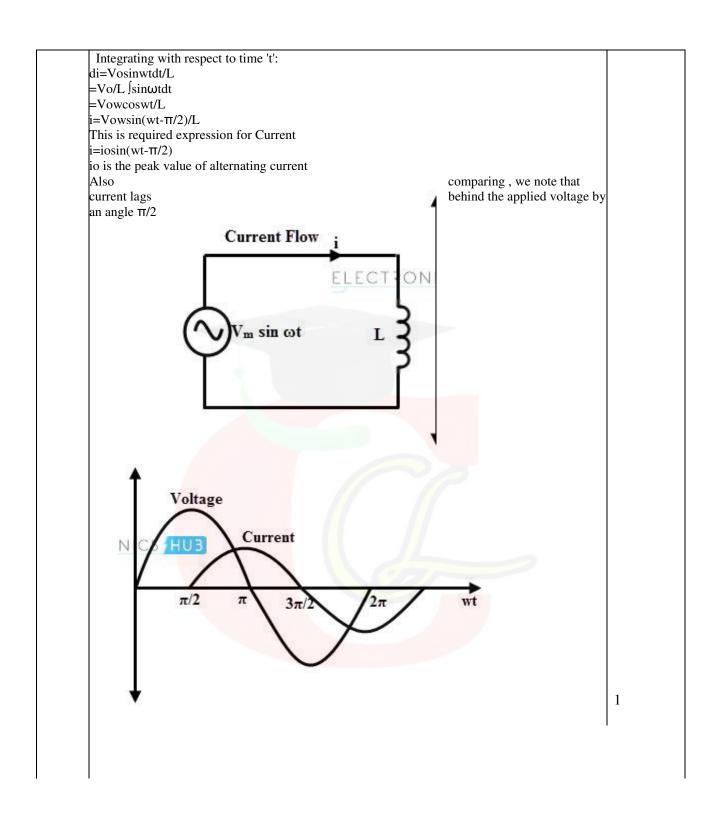
Class: XII

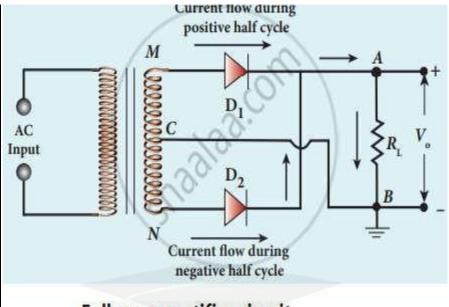
SESSION:2023-2024

MARKING SCHEME

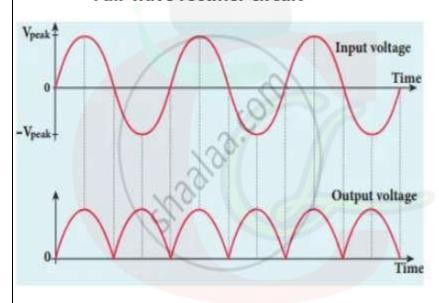

HBSESAMPLEQUESTIONPAPER(THEORY)


SUBJECT: PHYSICS

.no		Marks
	SECTIONA	
	(iv)ZERO	1
	(iv)Potentaldifferenceappuedacrosstheconductor	1
	(ii)materialAis germaniumandmaterialBiscopper	1
	(ii)lowresistances	1
	(i)decreases	1
	(ii)increases	1
	(iv)none	1
	(IV)Both Electic and magnetic field vectors are parallel to each other.	1
	(II) betweenf and 2f, between optical center and f	1
	(i)decreases	1
	(iii)3000Å	1
	(I V)4.77X10 ⁻¹⁰ m	1
	(ii) Thenuclearforceismuchweakerthanthe Coulombforce.	1
	(II)Convexionsoffocalingth10mete	1
	(d)Both A and R is incorrect	1
	c)AistruebutR isfalse	1
	a)Both AandR aretrueandRIsthecorrectexplanationofA	1
	c)Ais true butRisfalse	1
	SECTIONB	
	λ_1 -Microwave λ_2 ultraviolet	1
	A diamagneticB-paramagnetic	1
		1
	The magnetic field at any point due to an element of a conductor carrying currents (1) directly proportional to (a) the stength of the current (b) length of the element dl (c) sine of the angle θ between the element in the direction of current (2) Inversely proportional to the square of the distance r of the point OR	2


22	Moving coil galvanometers work on the principle that a current-carrying coil experiences torque when placed in a magnetic field. Asthe electric current is passed through the coil, a torque acts on it, which deflects the coil.	2
23		1/2
	The masses are in the ratio $m_p:m_d:m_\alpha=1:2:4$	
	As the momentum is same we get the velocity in the ratio $v_p: v_d: v_\alpha = 4:2:1$	
	For a charged particle in uniform magnetic field, we can write,	
	$\frac{\text{mv}^2}{\text{r}} = \text{Bqv}$	1/
	•	1/2
	If +e is the charge on proton, then charge on deutron is also +e and charge on alpha particle is +2e.	
		1/2
	Thus charges are in the ratio $q_p: q_d: q_\alpha = 1:1:2$	
	For a proton, a deutron and an alpha-particle are moving with same momentum in a uniform magnetic field	
	$f_p: f_d: f_\alpha = eBv: eBv: 2eBv$	
	As B is same we get	
	$f_p: f_d: f_\alpha = 2:1:1$	1/2
	p o u	
24	Angularwidth $2\phi = 2\lambda/dGiven$ $\lambda = 6000\text{Å}, d = 2x10^{-2}$	1
	$=2x6000/2x10^{-2}$	1
	=600000Å	
25	The minimum distance between the centre of the nucleus and the alpha particle just before it gets reflected back through 180° is defined as the distance of closest approach ro (also known as contact distance).	1
	$r_0 = rac{1}{4\pi\varepsilon_0} rac{2Ze^2}{rac{1}{2}mv_0^2} = rac{1}{4\pi\varepsilon_0} rac{2Ze^2}{E_k}$	
	OR	
	Rutherford's alpha(α) particles scattering experiment' resulted into the discovery of nucleus of an atom. That is, during his experiment, he found that, most space of an atom is empty, and he could find a small positively charged center in an atom which is called as the nucleus.	
	_ SECTIONC	

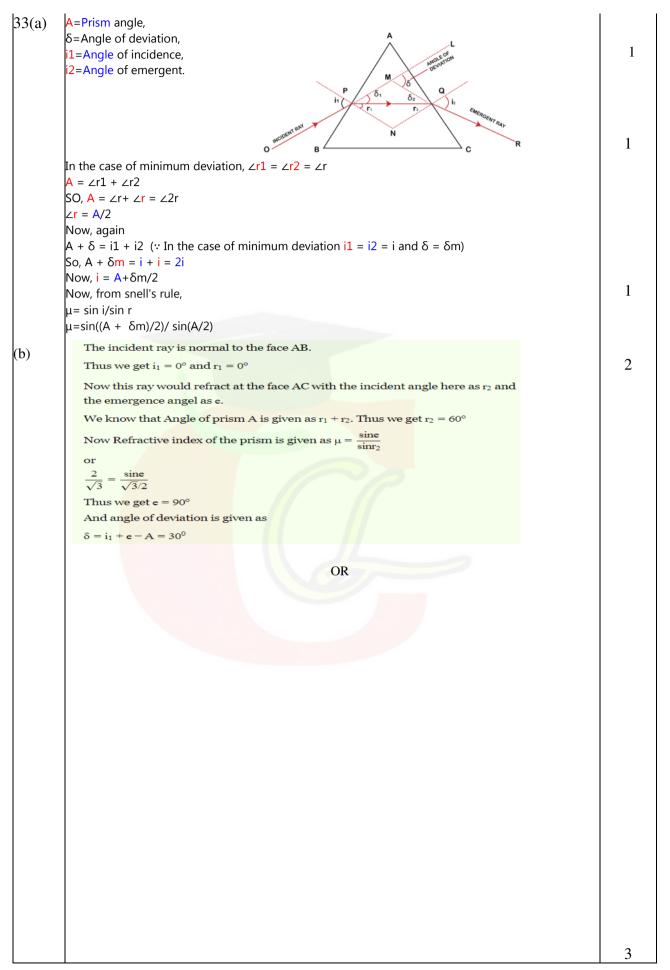
Surface charge density of plate B = -17.7×10^{-22} C/m ²	1
(a) In the outer region of plate I, electric field intensity E is zero.	
(b) Electric field intensity E in between the plates is given by relation	
$E=rac{\sigma}{\epsilon_0}$	
Where, \in_0 = Permittivity of free space = 8.85 x 10 ⁻¹² N ⁻¹ C ² m ⁻²	
$\therefore E = rac{17.7 imes 10^{-22}}{8.85 imes 10^{-1}}$	
Therefore, electric field between the plates is 2.0×10^{-10} N/C.	
I avecof photoclost ricomission (anythree)	
Lawsofphotoelectricemission:(anythree)	naaannothaaia
(i) Thereisadefinitecutoffvalueoffrequencybelowwhichelectro	nscannouseeje 1+1+1
ctedbyanysubstance.	
(ii) Numberofemittedelectronsaredirectlyproportionalto	
theintensityoflightincident.	
(iii)Kineticenergyofemittedelectronsdependsonthe	
frequencyofincidentlightonsubstance.	
(iv)Thereisnotimeloggingbetweentheincidentoflightand	
emissionofelectrons.	

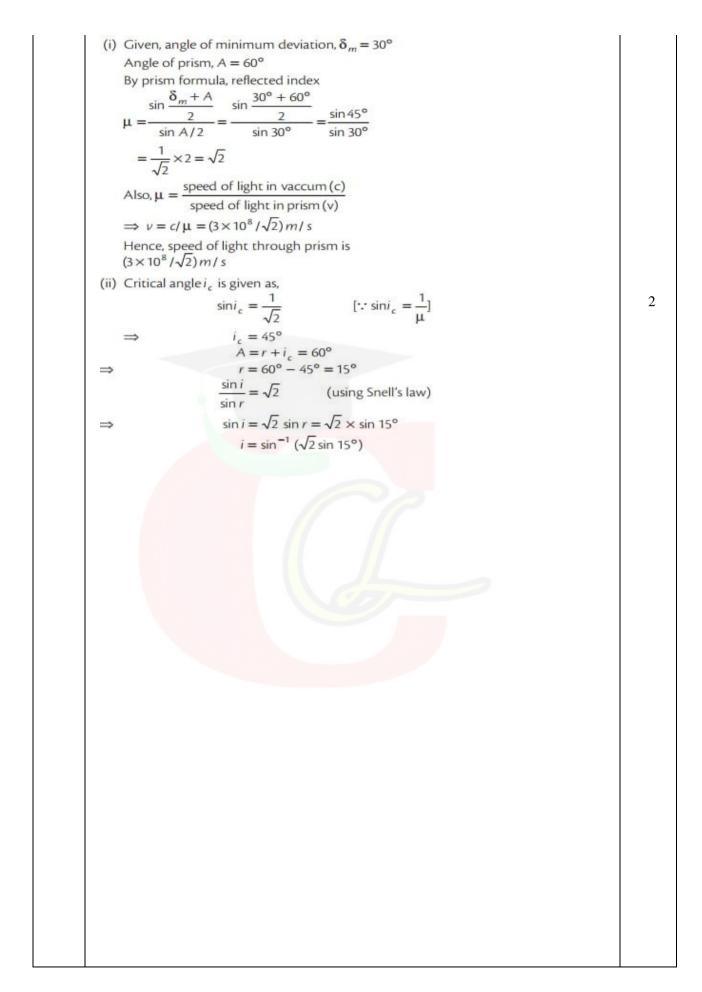


		1
30	First Postulate: Electron revolves round the nucleus in discrete circular orbits called stationary orbits without emission of radiant energy. These orbits are called stable orbits or non-radiating orbits.	1
	Second Postulate: Electrons revolve around the nucleus only in orbits in which their angular momentum is an integral multiple of $h/2\pi$.	1
	Third Postulate: When an electron makes a transition from one of its non-radiating orbits to another of lower energy, a photon is emitted having energy equal to the energy difference between the two states. The frequency of the	1
	emitted photon is then given by, $v = \frac{E_i - E_f}{h}$	
	SECTION- D	
31	p—n junction diode allows electric charges to flow in one direction, but not in the opposite direction; negative charges (electrons) can easily flow through the junction from n to p but not from p to n, and the reverse is true for holes.	2
	The processes that follow after forming a P-N junction are of two types – diffusion and drift. There is a difference in the concentration of holes and electrons at the two sides of a junction. The holes from the p-side diffuse to the n-side, and the electrons from the n-side diffuse to the p-side	1.5
	Drift is the process of movement of charge carriers due to the net electric field. In a pn-junction with no external source, electric field is from n-side to p-side and hence electrons drift from p-side to n-side.	1.5
	OR	

Full-wave rectifier circuit

WorkingofFullWaveRectifier


During the positive half cycle, diodeD₁ is forward blased as it is connected to the top of the second arywinding while diodeD₂ is reverse blased as it is connected to the bottom of the second ary winding. Due to this, diodeD₁ will.


Conductacting As Ashortar cultand D2 will not conduct Acting As An open arcult

During thenegative half cycle, the dioded D1 is reverse blased and the dioded D2 is forward blased because the tophalf of the second ary circuit becomes negative and the bottom half of the circuit becomes positive. Thus in a full wave rectifiers, DC voltage is obtained for both positive and negative half cycle.

3

32(a)	Driftvelocity: It is the Average velocity acquired by the free electronssuperimposed over the random motion in the direction opposite to electric field and along the length of the metalic conductor. Let'n = number of free electrons per unitvolume, vd = Driftvelocity of electrons total number of free electrons passing through a crosssection in unittime N/T= nvd So, total charge passing through acrosssection in unittime i.e., current, eq. N/T= nevd.	2
	Then, $V = \varepsilon_1 - I_1 r_1 \implies I_1 = \frac{\varepsilon_1 - V}{r_1}$	
32(b)	Similarly, for cell ε_2 $I_2 = \frac{\varepsilon_2 - V}{r_2}$	1/2
	Putting these values in equation (i) $I = \frac{\varepsilon_1 - V}{r_1} + \frac{\varepsilon_2 - V}{r_2}$	1/2
	or $I = \left(\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	1/2
	or $V = \left(\frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$ (ii)	
	Comparing the above equation with the equivalent circuit of emf 'ε _{eq} ' and internal	
	resistance 'r _{eq} ' then,	1/2
	Then $(i) \varepsilon_{eq} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}$ $(ii) r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$	1/2
	(iii) The potential difference between A and B $V = \varepsilon_{eq} - I r_{eq}$	1/2
	OR Kirchhoff's first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving the junction. Kirchhoff's second rule—the loop rule: The algebraic sum of changes in potental around any closed circuit path (loop) must be zero	2
	R _e G R _e C	
	D Is all and the state of the s	1
	Derivation of balanced equation using kirchoff's law	2

SECTIONE

	SECTIONE	
34 a)	q = Ne(1)	1
	where, N is number of electrons present on the body, e is the charge on an	
	electron	
	Step 2: Substitute the values	
	From equation (1)	
	-1×10^{-9} C = -1.6×10^{-19} C × N	
	10 ⁻⁹	
	$N = \frac{10^{-9}}{1.6 \times 10^{-19}} = 6.25 \times 10^{9} \text{ electrons.}$	1
(b)		
	Scalar	
	Charge, Q = 3.2 x 10 ⁻⁷ C	
	Charge on the electron, $e = 1.6 \times 10^{-19} \text{ C}$	
(c)		
	Therefore,	2
	Number of electron transferred is given by,	2
	$n = \frac{Q}{e} = \frac{3.2 \times 10^{-7}}{1.6 \times 10^{-19}} = 2 \times 10^{12}.$	
	OR	
2.5	Defination of Charge.	
35a	SELF-Inductance is the tendency of A collingerist	1
	Changes in Currentin Itself	
b)		1
	Settinducuncedependson-	1
	1-Sizeofcol	
	2-Shapeofthecol	
	3-MATERIAID IT THE COL	
	4-/jEdim	
	\therefore Induced emf, $e=-rac{di}{dt}$	
- >	Given 1 = 10 H A; 0 A = 54 H = 0.9-	
c)	Given, L = 10 H, $\Delta i=9-4=5A, dt=0.2s$	
	emf, $e=10 imesrac{5}{0.2}=250V$	
	OCTATO	2
	OR	
	Statement of Lenz's Law.	
	Suitement of Deliz & Daw.	1