	Marking Schem	e IX Mat	hs 2023-24	4 (हिन्दी म	ाध्यम)	
Q.NO.	EXP		WER /VALUE	POINTS		MARKS
			CTION-A			
1	दो परिमेय संख्याओं के	बीच				
SOLUTION	(C) अपरिमित रूप से	अनेक परिमेय	संख्याएँ हैं			1
	एक त्रिभुज के कोणों व	न अनुपात 2	: 4 : 3 है। त्रि	भुज का सबसे	छोटा कोण	
2	है					
SOLUTION	(B) 40°					1
3	निम्न में से कौन त्रिभु	जों की सर्वांग	समता की कसौट	ी नहीं है?		
SOLUTION	(c) SSA					1
	एक त्रिभुज की दो भुज	ाओं की लंबाई	5 सेमी और 1	.5 सेमी है। त्रि	भुज की	
4	तीसरी भुजा की लंबाई	नहीं हो सकत	ी ।			
SOLUTION	(D) 3.4 cm					1
5	एक चतुर्भुज के तीन व	<mark>जेण 75</mark> °, 90° ३	और 75° हैं। चौथ	ा कोण है		
SOLUTION	D) 120°					1
	एक वृत्त की समान ज	वाएँ केंद्र पर	समान कोण ब	नाती (या सर्वां	गसम वृत्तों)	
6.) E T/F)					
SOLUTION	Т					1
	एक समकोण त्रिभुज क	<mark>ज आधार ८ र</mark>	ोमी और कर्ण 1	0 सेमी है। इस	का क्षेत्रफल	
	होगा					
7.						
SOLUTION	(k) 24 c m ²					
	एक शंकु में, यदि त्रिज्य	ा आधी कर व	दी जाए और ऊंच	गई दोगुनी कर	दी जाए, तो	
8.	आयतन होगा					
SOLUTION	C) आधा					1
9.	वर्ग 130-150 का वर्ग	.चिहन है				
SOLUTION	(C) 140					1
	बारंबारता बंटन					
	वर्ग अन्तराल	5-10	10-15	15-25	25-45	
	बारंबारता	6	12	10	8	
10.	का एक आयत चित्र खं	ोंचने के लिए,	वर्ग 25-45 की	समायोजित बा	रंबारता है:	
SOLUTION	(D) 2				_	1

11.	सबसे छोटी प्राकृत संख्या है	
SOLUTION	(B) 1	1
12.	$2 - x^2 + x^3$ में x^2 का ग्णांक होगा	
		1
SOLUTION	(k) -1	1
13.	$x = 0$ पर बहुपद $5x - 4x^2 + 3$ का मान ज्ञात कीजिए	
SOLUTION	(D) 3	
	एक शंकु का कुल पृष्ठीय क्षेत्रफल ,जिसकी त्रिज्या $\frac{r}{2}$ और तिर्यक ऊंचाई $2l$ है,	
	होगा:	
14.	(D) = (I + r)	
SOLUTION	(B) $\pi r(l + \frac{r}{4})$	
15.	त्रिभुज ABC में, BC = AB और ∠B=80° है, तब ∠A बराबर है:	
SOLUTION	(C) 50°	1
16.	चतुर्भुज के सभी आंतरिक कोणों का योग है	
SOLUTION	360°	1
	ABCD एक चक्रीय चतुर्भुज है जिसमें AB इसके परिगत वृत्त का व्यास है और	
	$\angle ADC=140^{\circ}$, तो $\angle BAC$ बराबर है:	
17. SOLUTION	(B) 50°	1
18.	एक ही वृत्तखंड में बने कोणहोते हैं।	
SOLUTION	बराबर	1
SOLUTION	अभिकथन (A) अगर $\sqrt{2=1.414}$, $\sqrt{3}$ =1.732 फिर $\sqrt{5}$ = $\sqrt{2}$ + $\sqrt{3}$	
	तर्क(R) धनात्मक (positive number) संख्या का वर्ग मूल हमेशा मौजूद होता	
	है	
19.	· ·	
	D) 👠 असत्य है लेकिन R सत्य है	
SOLUTION	`	1
	अभिकथन (A) किसी वृत्त की जीवा, जो उसकी त्रिज्या से दोगुनी लंबी होती है,	
	वृत्त का व्यास होती है।	
	तर्क (R) किसी वृत्त की सबसे लंबी जीवा वृत्त का व्यास होती है	
20.	राज (१५) किसा वृद्धा का राजरा संजा सामा वृद्धा का ज्यास हाता ह	
	📢 🐧 और R दोनों सत्य हैं और R, 🐧 की सही व्याख्या है।	
SOLUTION	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	1
	SECTION –B	

21	3 और 4 के बीच छह परिमेय संख्याएँ ज्ञात कीजिए।	
21		
	हम जानते हैं कि	
SOLUTION	$3 = 3 \times \frac{7}{7} = \frac{21}{7}$ 3117 $4 = 4 \times \frac{7}{7} = \frac{28}{7}$	1
BOLETION	इसलिए, 3 और 4 के बीच छह परिमेय संख्याएँ	
	$\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$	1
22.	सरल कीजिए $(3 + \sqrt{3})(2 + \sqrt{2})$	
	$= 3 (2 + \sqrt{2}) + \sqrt{3} (2 + \sqrt{2})$	
SOLUTION	$= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$	1
		1
	OR -1	
	सरल कीजिये : $(125)^{\frac{-1}{3}}$	
SOLUTION	$(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$	1
	$= 5^{-1} = \frac{1}{5}$	1
23.	1/(2+√3) के <mark>हर का परिमेयक</mark> रण कीजिये	
	$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	
	$=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}$	
SOLUTION	$-{(2)^2-(\sqrt{3})^2}$	1
	$=\frac{2-\sqrt{3}}{4-3}$	
	$=\frac{2-\sqrt{3}}{1}$	
		1
24.	103 × 107 का मान ज्ञात कीजिए	
	103×107= (100+3)×(100+7)	
	यहाँ, $x = 100$, $a = 3$, $b = 7$	
SOLUTION	सर्वसमिका, $[(x+a)(x+b) = x^2 + (a+b)x + ab$ द्वारा	1

	$103 \times 107 = (100 + 3) \times (100 + 7)$	
	$(100)^2 \cdot (2 \cdot 7)100 \cdot (2 \cdot 7)$	
	$= (100)^{2} + (3+7)100 + (3\times7)$ = 10000+1000+21	
	= 10000+1000+21 = 110211	1
25.	k का मान ज्ञात कीजिए, यदि $x - 1$, $p(x)$ का एक गुणनखंड है $p(x) = x^2 + x + k$	
	यदि $x - 1, p(x)$ का एक गुणनखंड है तो	
	p(1) = 0	
	गुणनखंड प्रमेय द्वारा	
SOLUTION	$\Rightarrow (1)^2 + (1) + k = 0$	1
	1+1+k=0	
	\Rightarrow 2+k = 0	
	$\Rightarrow k = -2$	1
	OR	
	गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए कि $x-3$, बहुपद x^3-4x^2+x+6 का	
	एक गुणनखंड है या नहीं ?	
	x-3 =0 लेने पर	
	x = 3	
SOLUTION	x=3 बह्पद में रखने पर (3) ³ -4(3) ² +3+6	1
	= 27-36+3+6= 0	
	अतः ग्णन <mark>खंड प्रमेय द्वारा x</mark> -3, बहुपद x ³ -4x ² +x+6 का एक ग्णनखंड है।	1
	SECTION-C	
	गुणनखण्ड कीजिए 12x² - 7x + 1	
26.	3	
	मध्य पद को विभाजित करने की विधि का उपयोग करते हुए,	
	हमें एक संख्या ज्ञात करनी है जिसका योग = -7 है	
	और गुणनफल =1×12 = 12	
	हमें संख्या के रूप में -3 और -4 मिलते हैं [-3+-4=-7 और -3×-4 = 12]	
	$12x^2-7x+1$	
SOLUTION	$=12x^2-4x-3x+1$	1
	=4x(3x-1)-1(3x-1)	1
	= (4x-1)(3x-1)	1
	एक अर्द्धगोलीय कटोरे की त्रिज्या 3.5 सेमी है। इसमें पानी की मात्रा कितनी	_
27.	होगी?	
41.		

	D = 35 CM	
	R = 3.5 CM	
	गोले का आयतन =4/3(∏R³)	
	अर्धगोले का आयतन =2/3(ПR ³)	1
	=(2/3)x3.14x3.5x3.5x3.5	1
	=89.75 सेमी ³	_
SOLUTION		1
SOLUTION	OR	
	एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, यदि इसकी तिर्यक ऊँचाई 21	
	मीटर है और इसके आधार का व्यास 24 मीटर है।	
	शंकु की तिर्यक ऊंचाई (I)=21 मी	
	शंकु के आधार का व्यास =24 मी	
SOLUTION	त्रिज्या (r)=24/2=12 मीटर	1
	कुल पृष्ठीय क्षेत्रफल =πr(<mark>l+r)=22</mark> /7×12(21+1 <mark>2)</mark> मी ²	
	22	1
	=22/7×12×33 मी2=8712/7मी2=1244.57 मी ²	1
28.	गुणनखण्ड <mark> कीजिए 27Y³ +</mark> 125Z ³	
	$27Y^{3}+125Z^{3} = (3Y)^{3}+(5Z)^{3}$	
	हम जानते हे की, $x^3+y^3=(x+y)(x^2-xy+y^2)$ = $27Y^3+125Z^3$	
	$(3Y)^3 + (5Z)^3$	
SOLUTION	$=(3y)^3+(5z)^3$	1
	$= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2]$	
	$= (3Y+5Z)(9Y^2-15YZ+25Z^2)$	2
29	समीकरण $x + 2y = 6$ के चार भिन्न हल ज्ञात कीजिए।	
	x + 2y = 6	
	X=6-2Y Y=0 रखने पर	
	1=0 रखन पर X=6	
	पहला हल (X=6, Y=0)	
	Y=1 रखने पर	
	X=6-2x1	
	X=4	
	दूसरा हल (X=4,Y=1)	1.5
	Y=2 रखने पर	1.5
	I.	

	X=6-2 x 2	
	X=2	
	तीसरा हल (X=2,Y=2)	
	Y=3 रखने पर	
	X=6-2 x 3	
	X=0	
	चौथा हल (X=0,Y=3)	
	k का मान ज्ञात कीजिए, यदि $x = 2, y = 1$ समीकरण $2x + 3y = k$ का एक हल	
30	है।	
	2x + 3y = k.	
	x = 2, y = 1 समीकरण में रखने पर	
SOLUTION	2x2+3x1=K	2
	4+3=K	
	K=7	1
31.	गुणनखण्ड कीजिए 8X³ + 27Y³ + 36X²Y + 54XY²	
	व्यंजक $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
	के रूप में लिखा जा सकता है	
SOLUTION	$(2X)^{3} + (3Y)^{3} + 3(2X)^{2}(3Y) + 3(2X)(3Y)^{2}$	1
	$=(2X)^{3} + (3Y)^{3} + 3(2X)^{2}(3Y) + 3(2X)(3Y)^{2}$	
	$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$ $(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$	1
	$=(2X+3Y)^3$	
	=(2X+3Y)(2X+3Y)(2X+3Y)	1
	अथवा गणनखण्ड कीजिए 8X ³ + Y ³ + 27Z ³ – 18XYZ	
	8X ³ + Y ³ + 27Z ³ – 18XYZ	
	के रूप में लिखा जा सकता है	
	वर राव वर्ग सिवा जा समिता ह	
	$(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$	
SOLUTION		1
	$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$	1
	$= (2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$	
		1
	$(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$	

	यदि एक बिंदु C दो बिंदुओं A और B के बीच इस प्रकार स्थित है कि AC =	
	BC है, तो सिद्ध कीजिए AC = ½ AB चित्र बनाकर समझाइए।	
32.		
	C	
SOLUTION	A , B	1
502011011	दिया गया है कि , AC = BC	_
	अब दोनों तरफ AC को जोड़ रहे हैं	
	L.H.S+AC = R.H.S+AC	2
	AC+AC = BC+AC	2
	2AC = BC + AC	
	हम जानते हैं कि, BC+AC = AB (क्योंकि यह रेखाखंड AB के साथ संपाती है)	
	∴ 2 AC = AB (यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।)	
	$\Rightarrow AC = (\frac{1}{2}) AB.$	2
	चित्र में रेखाएँ XY और MN O पर प्रतिच्छेद करती हैं। यदि ∠POY = 90° और	
	a:b=2:3 है, तो c ज्ञात कीजिए।	
	4.0-2.36, (ii C vii(1 4/10))	
	M b a	
	X COY	
33.	NZ	
	हम जानते <mark>हैं कि रैखिक युग्</mark> मों का योग हमेशा 180° के बराबर होता है	
	इसलिए, ∠POY +a +b = 180°	
SOLUTON		1

	जैसा कि प्रश्न में दिया गया है $\angle POY = 90^{\circ}$ का मान रखने पर, $a+b=90^{\circ}$	
	a+0 = 90	
	दिया ह्आ है : a:b=2:3	1
	मान लीजिए a =2x है और b =3x है	•
	$\therefore 2x + 3x = 90^{\circ}$	
	इसे हल करने पर हमें प्राप्त होता है	
	$5x = 90^{\circ}$ So, $x = 18^{\circ}$	
	50, X = 10	1
	$\therefore a = 2 \times 18^{\circ} = 36^{\circ}$	
	इसी प्रकार, b की गणना की जा सकती है और मान होगा	1

	$b = 3 \times 18^{\circ} = 54^{\circ}$	
	आरेख से, b+c भी एक सीधा कोण बनाता है,	
	इसलिए, b+c = 180°	
	$c+54^{\circ} = 180^{\circ}$	
	$\therefore c = 126^{\circ}$	1
	चित्र में यदि AB CD, ∠APQ = 50° और ∠PRD = 127°, x और y ज्ञात	1
	कीजिए।	
	A P B 50° y 127°	
	C O R D	
OR 33		
	चित्र से $\angle APQ = \angle PQR$ (अंतः एकांतर कोण)	
	∠APQ = 50° और ∠PQR = x का मान रखने पर	
	$x = 50^{\circ}$	
SOLUTION	- 40	1
	新 ····································	
	$\angle APR = \angle PRD$ (अंतः एकांतर कोण)	
	Or, ∠APR = 127° (जैसा कि दिया गया है कि ∠PRD = 127°)	
	हम वह जानते हैं ∠APR =∠APQ+∠QPR	2
	अब, ∠QPR = y और ∠APR = 127° का मान रखने पर,	
	हम पाते हैं	
	$127^{\circ} = 50^{\circ} + y$ Or, $y = 77^{\circ}$	
	इस प्रकार, x और y के मानों की गणना इस प्रकार की जाती है:	
	x = 50° और y = 77°	
	X = 30	2
	एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 सेमी और 10 सेमी	_
34	हैं तथा परिमाप 42 सेमी है।	
34.	· · · · · · · · · · · · · · · · · · ·	
	त्रिभुज की तीसरी भुजा को "x" मान लें।	
	अब, त्रिभुज की तीन भुजाएँ 18 सेमी, 10 सेमी और "x" सेमी हैं	
	दिया गया है कि त्रिभुज का परिमाप = 42 सेमी	
SOLUTION	इसलिए, x = 42-(18+10) सेमी = 14 सेमी	
SOLUTION		

तिभुज का अर्ध परिमाप = 42/2 = 21 सेमी हैरोंन के सूत्र का प्रयोग करने पर, तिभुज का क्षेत्रफल= √s(s − a)(s − b)(s − c) = √[21(21-18)(21-10)(21-14)] सेमी² = √[21×3×11×7] सेमी² = 21√11 सेमी² पक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यंक ऊँचाई 10 सेमी और आधार की तिज्ञ्या 7 सेमी है। दिया गया है : I=10 सेमी , त्रिज्या r = 7 सेमी 1 लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl = 22/7×7×10 = 220 सेमी² SOLUTION चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं?			
हीरोन के सूत्र का प्रयोग करने पर, तिअनुज का क्षेत्रफल= √s(s-a)(s-b)(s-c) = √[21(21-18)(21-10)(21-14)] सेमी² = √[21×3×11×7] सेमी² = 21√11 सेमी² पक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यक ऊँचाई 10 सेमी और आधार की त्रिज्या 7 सेमी है। दिया गया है : /=10 सेमी ,त्रिज्या r = 7 सेमी 1			
तिक्षुज का क्षेत्रफल= $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{[21(21-18)(21-10)(21-14)]}$ सेमी² = $\sqrt{[21\times3\times11\times7]}$ सेमी² = $\sqrt{[21\times3\times11\times7]}$ सेमी² एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यक ऊँचाई 10 सेमी और आधार की निज्या 7 सेमी है। दिया गया है : $\sqrt{[3]}$ तिज्या $\sqrt{[3]}$ हे। तिया गया है : $\sqrt{[3]}$ तिज्या $\sqrt{[3]}$ ते। तिया गया है : $\sqrt{[3]}$ तिज्या $\sqrt{[3]}$ ते। तिया गया है : $\sqrt{[3]}$ तिज्या $\sqrt{[3]}$ ते। तिया गया है : $\sqrt{[3]}$ ते। तिया गया है : $\sqrt{[3]}$ तिज्या $\sqrt{[3]}$ ते। तिया गया है : $[3]$		त्रिभुज का अर्ध परिमाप = 42/2 = 21 सेमी	1
= V[21(21-18)(21-10)(21-14)] सेमी ² = V[21×3×11×7] सेमी ² = 21V11 सेमी ² पक लम्ब बृत्तीय शंकु का वक पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यक ऊँचाई 10 सेमी और आधार की जिज्या 7 सेमी है। दिया गया है : /=10 सेमी ,जिज्या r = 7 सेमी लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl = 22/7x7×10 = 220 सेमी ² SOLUTION चतुर्श्रुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं?		हीरोन के सूत्र का प्रयोग करने पर,	1
= √[21×3×11×7] सेमी² = 21√11 सेमी² 1 1 1 1 1 1 1 1 1 1 1 1 1		त्रिभुज का क्षेत्रफल= $\sqrt{s(s-a)(s-b)(s-c)}$	ı
= v[21×3×11×7] सेमी ² = 21v11 सेमी ² 1 1 1 1 1 1 1 1 1 1 1 1 1			
= v[21×3×11×7] सेमी ² = 21v11 सेमी ² 1 1 1 1 1 1 1 1 1 1 1 1 1		= y[21/21_18)/21_10)/21_14\}	
= v[21×3×11×7] सेमी ² = 21v11 सेमी ² ver लम्ब तृत्तीय शंकु का वक पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यंक ऊँचाई 10 सेमी और आधार की तिज्या 7 सेमी है। दिया गया है : /=10 सेमी ,ित्रज्या r = 7 सेमी пम्बतृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl = 22/7x7×10 = 220 सेमी ² SOLUTION चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं?		- V[21(21-10)(21-14)] (WII	
एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यक ऊँघाई 10 सेमी और आधार की तिज्या 7 सेमी है। दिया गया है : /=10 सेमी ,ित्रज्या r = 7 सेमी 1 लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl 1 = 22/7×7×10 2 = 220 सेमी² 1 SOLUTION चतुर्शुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं?		= v[21×3×11×7] सेमी²	1
एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल जात कीजिए जिसकी तिर्यंक ऊँचाई 10 सेमी और आधार की तिज्या 7 सेमी है। दिया गया है : /=10 सेमी ,ित्रज्या r = 7 सेमी तम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl = 22/7x7×10 = 220 सेमी² SOLUTION चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं? C			1
सेमी और आधार की बिज्या 7 सेमी है। दिया गया है : /=10 सेमी , जिज्या r = 7 सेमी 1 लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl 1 = 22/7x7×10 2 = 220 सेमी² SOLUTION चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD, आप BC और BD के बारे में क्या कह सकते हैं? C		= 21v11 सेमी ²	
सेमी और आधार की बिज्या 7 सेमी है। दिया गया है : /=10 सेमी , जिज्या r = 7 सेमी 1 लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl 1 = 22/7x7×10 2 = 220 सेमी² SOLUTION चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD, आप BC और BD के बारे में क्या कह सकते हैं? C		ਸ਼ੁਰੂ ਕਰਦੇਸ਼ ਅੰਤ ਦਾ ਰਦ ਸ਼ੁਰੂਦਿ ਐਕਾਰਟ ਦਾਰ ਦੀਉਸ਼ ਵਿਸ਼ਵੀ ਰਿਸ਼ੰਦ ਤੌਜ਼ਸ਼ੰ 10	
दिया गया है : /=10 सेमी , त्रिज्या r = 7 सेमी 1 1 1 1 1 1 1 1 1	24.00	•	
1 1 1 1 1 1 1 1 1 1	34 UK	समा आर आवार का किया / समा हा	
लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl = 22/7x7×10 = 220 सेमी ² SOLUTION = aqáy a ABCD, AC = AD और AB, ΔA को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं?		दिया गया है : /=10 सेमी ,त्रिज्या r = 7 सेमी	
= 22/7x7×10 = 220 सेमी ² SOLUTION = aqs/y or ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं? C			1
= 22/7x7×10 = 220 सेमी ² SOLUTION = aqs/y or ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं? C			
= 220 सेमी ² SOLUTION = 220 सेमी ² चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं? C		लम्बवृत्तीय <mark>शंकु का वक्र पृष्ठी</mark> य क्षेत्रफल = πrl	1
= 220 सेमी ² SOLUTION = 220 सेमी ² चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं? C			2
SOLUTION चतुर्भुज ABCD, AC = AD और AB, ΔA को समद्विभाजित करता है दिखाइए कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं? C B			
चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं? C B		= 220 समी ²	-
कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं? C B	SOLUTION		
A B		चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए	
A B		कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं?	
		С	
25		$A \longrightarrow B$	
25			
25		× /	
25			
55. D	35.	D	
दिया गया है : AC = AD और रेखाखंड AB , ∠A को समद्विभाजित करती है।		दिया गया है : AC = AD और रेखाखंड AB , ∠A को समद्विभाजित करती है।	
$SOLUTION$ सिद्ध करना है : $\Delta ABC \cong \Delta ABD$	SOLUTION	सिद्ध करना है : $\Delta ABC\cong \Delta ABD$	2
$ ext{SOLUTION}$ सिद्ध करना है : $\Delta ext{ABC} \cong \Delta ext{ABD}$	SOLUTION	सिद्ध करना है : $\Delta ABC\cong \Delta ABD$	2

	प्रमाण:	
	त्रिभुजों ΔABC और ΔABD में	
	(i) AC = AD (दिया गया है)	
	(ii) AB = AB (उभयनिष्ठ)	
	(iii) ∠CAB = ∠DAB (क्योंकि AB कोण A का समद्विभाजक है)	
	इसलिए, $\Delta ABC\cong \Delta ABD$. (SAS सर्वांगसमता कसौटी के अनुसार)	2
	प्रश्न के दूसरे भाग के लिए, BC =BD हैं। (C.P.C.T के नियम के अनुसार)	1
	विज्ञापन के लिए फ्लाईओवर की त्रिकोणीय साइड की दीवारों का उपयोग	
	किया गया है। दीवारों की भुजाएँ 122 मीटर, 22 मीटर और 120 मीटर हैं।	
	विज्ञापनों से प्रति वर्ष 5000 रुपये प्रति m² की कमाई होती है। उपरोक्त	
	जानकारी और दी गई आकृति के आधार पर निम्नलिखित प्रश्नों का उत्तर दें	
	(i) दीवार का परिमाप ज्ञात कीजिए I	
	(ii) हीरोन <mark>का सूत्र</mark> लिखिए।	
	(iii) त्रिभु <mark>जाकार दीवार का</mark> क्षेत्रफल ज्ञात कीजिए l	
	अथवा	
	यदि कंप <mark>नी 1680 वर्ग मीटर</mark> क्षेत्रफल वाली एक दीवार को 3 महीने के लिए	
	किराए पर लेती है, तो उसे कितना किराया देना होगा?	
36.		
	(i) त्रिभुज ABC की <mark>भुजाएँ क्रमशः</mark> 122 मीटर, 22 मी <mark>टर और</mark> 120 मीटर हैं	
	अब, परिमाप (122+22+120) = 264 मीटर होगा	
SOLUTION		1
	(ii) Δ का क्षे $0 = \sqrt{s(s-a)(s-b)(s-c)}$ जहाँ $s = (a+b+c)/2$	2
	(i) अर्द्ध परिमाप (s) = 264/2 = 132 मी.	
	हीरोन के सूत्र का प्रयोग करने पर,	
	त्रिभुज का क्षेत्रफल = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$=\sqrt{132(132-122)(132-22)(132-120)}$	
	$=\sqrt{132\times10\times110\times12}$	
	$=1320 \text{ m}^2$	2
	OR	2

	हम जानते हैं कि प्रति वर्ष विज्ञापन का किराया = 5000 प्रति वर्ग मीटर	
	∴ एक दीवार का 3 महीने का किराया = रु. (1680×5000×3)/12	
	= vo. 2100000	
	आकृति देखकर निम्नलिखित प्रश्नों के उत्तर दें ।	
	(i) B के निर्देशांक।	
	(ii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंद्।	
	(iii) बिंदु D का भुज तथा बिंदु H की कोटि ज्ञात कीजिए I	
	अथवा	
	आकृति में रेखाखंड BD का X-अक्ष के साथ बनने वाले आयत का क्षेत्रफल	
27	ज्ञात कीजिए ।	
37.	B का निर्देशांक (−5, 2) है।	
SOLUTION		1
	निर्देशांक (-3,-5) द्वारा पहचाना गया बिंद् E है।	
		1
	बिंदु D का भुज 6 तथा बिंदु H की कोटि -3 है।	2
	OR	2
	आयत का क्षेत्रफल= ल $o \times चौo= 11 \times 2=22$ वर्ग इकाई	2
	कक्षा IX के एक विशेष खंड में, 40 छात्रों से उनके जन्म के महीनों के बारे में	
	पूछा गया था और प्राप्त आंकड़ों के लिए निम्नलिखित ग्राफ तैयार किया गया	
	था। दिए गए दंड आलेख को देखें और निम्नलिखित प्रश्नों के उत्तर दें:	
	↑	
	↑ 7 	
	6	
	5 -	
	pg 4 +	
	52 3 t	
	호 2 -	
	Number of Students	
	,	
	Jan. Feb. Mar. May. July July Sep. Oct. Dec.	
	Months of Birth>	
38.	(i) नवंबर के महीने में कितने विदयार्थियों का जन्म हआ?	
	<u> </u>	

	(ii) किस महीने में सबसे अधिक विद्यार्थियों का जन्म हुआ?	
	(iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ।	
	अथवा	
	मई से अगस्त के बीच पैदा हुए छात्रों की कुल संख्या ज्ञात कीजिए।	
SOLUTION	(i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था	1
	(ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ	1
	(iii) फरवरी, अक्टूबर, नवंबर, दिसंबर	
		2
	OR	
	मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र	
	3	
		2
	Marking Scheme IX Maths 2023-24 (English Medium)	
Q.NO.	EXPECTED ANSWER /VALUE POINTS	MARK
	GT GTT O.V.	S
1	SECTION –A	
•	Between two rational numbers	1
SOLUTION	(C) there are infinitely many rational numbers	1
2	Angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is	
SOLUTION	(B) 40°	1
3	Which of the following is not a criterion for congruence of	1
	triangles?	
SOLUTION	(C) SSA	
4	Two sides of a triangle are of lengths 5 cm and 1.5 cm. The	1
	length of the third side of the triangle cannot be	
SOLUTION	(D) 3.4 cm	
5	Three angles of a quadrilateral are 75°, 90° and 75°. The fourth	
	angle is	
SOLUTION	D) 120°	1

	1					Т
6	Equal chords of a angles at the centr	•	of congrue	nt circles) su	btend equal	
SOLUTION			TRUE			1
7	The base of a righ	t triangle	is 8 cm and	l hypotenuse	is 10 cm. Its	
	area will be					
SOLUTION	(A) 24 cm2					1
8	In a cone, if radius will be	s is halved	and height	is doubled,	the volume	
SOLUTION	(C) halved					1
9	The class-mark of	the class	130-150 is :			
SOLUTION	(C) 140					1
10	To draw a histogradistribution:	am to rep	resent the f	ollowing freq	uency	
	Class Interval	5-10	10-15	15-25	25-45	
	Frequency	6	12	10	8	1
	The adjusted frequency	uency for	the class 25	-45 is:		-
SOLUTION	(D) 2					1
11	The smallest natur	ral numbe	er is :			
SOLUTION	(B) 1					1
12	The coefficients of	$f X^2$ in 2	$2 - X^2 + X^3$			
SOLUTION	(A) -1					1
13	Find the value of	the polyn	omial 5	$X - 4X^2 + 3 a$	$\mathbf{t}: \mathbf{x} = 0$	
SOLUTION	(D) 3					1
14	()			r		1
	The total surface	area of a c	cone wnose		na siant	
COLUTION	height 2 <i>l</i> is:					1
SOLUTION	(B) $\pi r(l + \frac{r}{4})$					1
15	In triangle ABC,	BC = AB	and $\angle B = 8$	80° . Then ∠ <i>A</i>	is equal to:	
SOLUTION	(c) 50°					1
16	sum of all the inte	eriors angl	e of quadri	lateral is	•	
SOLUTION	360°					
17	ABCD is a cyclic of	uadrilate	ral such tha	t AB is a dia	meter of a	
	circle circumscrib	_				
	to:				_	
SOLUTION	(B) 50°					1
18	Angles in the same	e segment	of a circle a	ıre	••••	

SOLUTION	equal	1
19	Assertion (A) if $\sqrt{2}=1.414$, $\sqrt{3}=1.732$ then $\sqrt{5}=\sqrt{2}+\sqrt{3}$	
	Reason (R) Square root of positive number always exists.	
SOLUTION	A is false but R is true	1
20	Assertion (A) A chord of a circle, which is twice as long as its	
	radius, is a diameter of the circle.	
	Reason (R) The longest chord of a circle is a diameter of the	
	circle	
SOLUTION	Both A and R are true and R is the correct explanation of A.	1

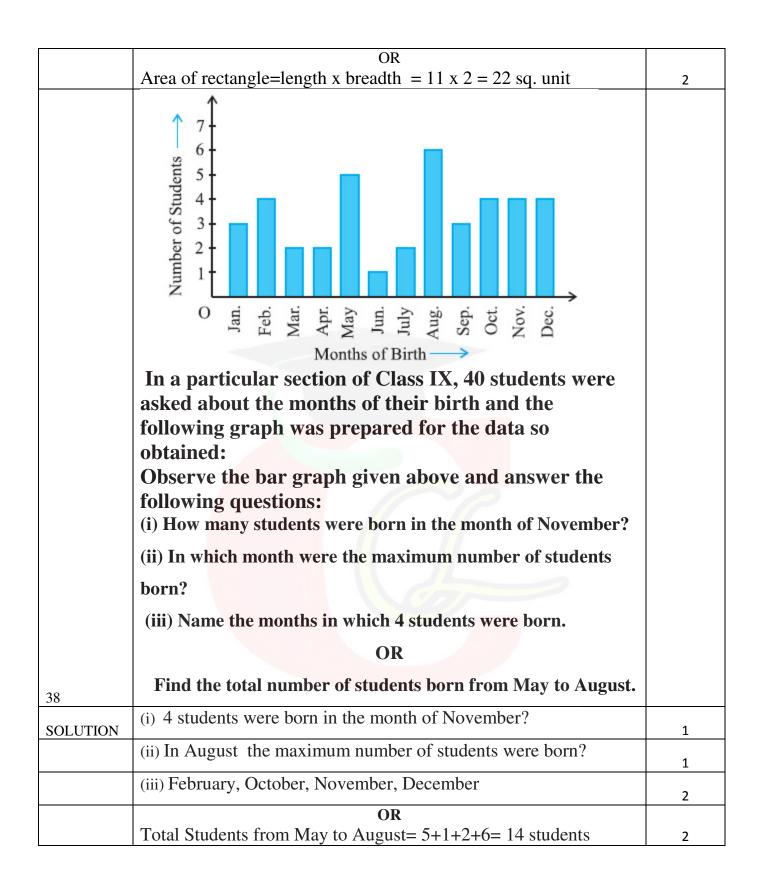
SECTION -B

Q.NO.	EXPECTED ANSWER /VALUE POINTS	MARKS
21	Find six rational numbers between 3 and 4.	
	We know that $3 = 3 \times \frac{7}{7} = \frac{21}{7}$, $4 = 4 \times \frac{7}{7} = \frac{28}{7}$	
SOLUTION		1
	Hence, six rational numbers between 3 and 4 $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$	1
22	Simplify $(3 + \sqrt{3})(2 + \sqrt{2})$	
SOLUTION	$= (3 (2 + \sqrt{2})) + (\sqrt{3} (2 + \sqrt{2}))$	1
	$= 6 + 3\sqrt{2 + 2}\sqrt{3 + \sqrt{6}}$	1
	OR	
	Simplify: $(125)^{\frac{-1}{3}}$	
SOLUTION	$(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$	1
	$=5^{-1}=\frac{1}{5}$	1
	1	
	Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$	
23		
SOLUTION	$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2)2-(\sqrt{3})2}$	1

	$2-\sqrt{3}$ $2-\sqrt{3}$	
	$=\frac{2-\sqrt{3}}{4-3} = \frac{2-\sqrt{3}}{1}$	1
	Evaluate 103 × 107	1
24		
	$103 \times 107 = (100 + 3) \times (100 + 7)$	
	Here, $x = 100$, $a = 3$, $b = 7$	
SOLUTION	Using identity, $[(x+a)(x+b) = x^2 + (a+b)x + ab$	1
	We get, $103 \times 107 = (100 + 3) \times (100 + 7)$	
	$= (100)^2 + (3+7)100 + (3\times7)$	
	= 10000+1000+21	
	$= 110211$ Eind the value of k if y 1 is a factor of $n(y) = n(y) = y^2 + y + k$	1
	Find the value of k, if $x - 1$ is a factor of $p(x)$, $p(x) = x^2 + x + k$	
25	If x-1 is a factor of $p(x)$, then $p(1) = 0$	
	By Factor Theorem	
	$\Rightarrow (1)^2 + (1) + k = 0$	
SOLUTION		1
	$ \begin{aligned} 1+1+k &= 0 \\ \Rightarrow 2+k &= 0 \end{aligned} $	
	$\Rightarrow k = -2$	
	$\rightarrow R = -2$ OR	1
	Use the Factor Theorem to determine whether x-3 is a factor	
	of polyn <mark>omial x³-4x²+x+6?</mark>	
	Take x-3 =0	
	$\Rightarrow x = 3$	
SOLUTION	putting $x=3$ in given polynomial $(3)^3-4(3)^2+3+6$	1
	= 27-36+3+6= 0	
	Therefore by factor theorem x-3 is a factor of polynomial	
	x^3-4x^2+x+6	1
	SECTION -C	
	Factorise : $12x^2 - 7x + 1$	
26		
-	Using the splitting the middle term method,	
	We have to find a number whose sum $= -7$	
SOLUTION	and product $=1 \times 12 = 12$	1

	We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12]$	
	$12x^2-7x+1$	
	$= 12x^2 - 4x - 3x + 1$	
	=4x(3x-1)-1(3x-1)	
	$= 4\lambda(3\lambda^{-1})^{-1}(3\lambda^{-1})$	1
	= (4x-1)(3x-1)	1
	A hemispherical bowl has a radius of 3.5 cm. What would be	
	the volume of water it would contain?	
27		
	R=3.5 cm	
SOLUTION	Volume of hemisphere = $2/3(\Pi R^3)$	1
	=(2/3)x3.14x3.5x3.5x3.5	1
	$=89.75 \text{ cm}^3$	1
	OR	
	Find the Total surface area of a cone, if its slant height is 21 m	
	and diameter of its base is 24 m.	
	Slant height of a cone (1)=21 m	
	diameter of its base =24 m	
	Radius (r)= $\frac{24}{2}$ =12 m	
SOLUTION		1
	Now total surface area= $\pi r(1+r)=22/7\times12(21+12)m^2$	
		1
	$=22/7\times12\times33 \text{ m}^2=8712/7\text{m}^2=1244.57 \text{ m}^2$	-
	Factorise $27Y^3 + 125Z^3$	1
28		
	$27Y^3+125Z^3$	
	The expression, $27Y^3+125Z^3$ can be written as $(3Y)^3+(5Z)^3$	
		1
	$27Y^3 + 125Z^3 = (3Y)^3 + (5Z)^3$	
	We know that, $x^3+y^3 = (x+y)(x^2-xy+y^2)$	
	$=27Y^3+125Z^3$	
	$=(3y)^3+(5z)^3$	1
	$= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2$	
	$= (3Y+5Z)(9Y^2-15YZ+25Z^2)$	
		1
	Find four different solutions of the equation $x + 2y = 6$.	
29		
	x + 2y = 6	
SOLUTION	X=6-2Y	2

		1
	PUT Y=0	
	X=6	
	1^{ST} SOLUTION (X=6, Y=0)	
	PUT Y=1	
	$X=6-2\times1$	
	X=4	
	2^{ND} SOLUTION (X=4,Y=1)	
	PUT Y=2	
	$X=6-2\times 2$	
	X=2	
	3^{RD} SOLUTION (X=2,Y=2)	
	PUT Y=3	
	$X=6-2\times3$	
	X=0	
	4^{TH} SOLUTION (X=0,Y=3)	
	4 SOLUTION (X=0, Y=3)	1
	Find the value of h if n 2 n 1 is a solution of the equation	
	Find the value of k , if $x = 2$, $y = 1$ is a solution of the equation	
20	2x + 3y = k.	
30	2n+2n-k	
	2x + 3y = k.	
	2 1	
	x = 2, y = 1	
	$2\times2+3\times1=K$	
SOLUTION	4.0.16	2
	4+3=K	
	K=7	1
	Factorise $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
31		
	The expression, $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
SOLUTION	can be written as $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$	1
	$=(2X)^{3} + (3Y)^{3} + 3(2X)^{2}(3Y) + 3(2X)(3Y)^{2}$	
	$(x+y)^3 = x^3 + y^3 + 3xy (x + y)$	1
	$=(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$	1
	$=(2X+3Y)^3$	
	=(2X+3Y)(2X+3Y)(2X+3Y)	1
	OR	
31	Factorise $8X^3 + Y^3 + 27Z^3 - 18XYZ$	
	The expression $8X^3 + Y^3 + 27Z^3 - 18XYZ$	
	Can be written as $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$	
SOLUTION		1
202011011	I .	


	$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$	
		1
	$= (2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$	
	$(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$	1
	SECTION-D	
	If a point C lies between two points A and B such that AC =	
	BC, then prove that $AC = \frac{1}{2}AB$. Explain by drawing the fig.	
32	be, then prove that he = 72 hb. Explain by drawing the lig.	
32		
	C	
SOLUTION	A B	1
SOLUTION	Given that, $AC = BC$	1
	,	
	Now, adding AC both sides.	
	L.H.S+AC = R.H.S+AC	_
		2
	AC+AC = BC+AC	
	2AC = BC + AC	
	We know that, $BC+AC = AB$ (as it coincides with line segment	
	AB)	
	\therefore 2 AC = AB (If equals are added to equals, the wholes are equal.)	
	\Rightarrow AC = $(\frac{1}{2})$ AB.	
		2
	In Fig. lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and $a:$	
	b=2:3, find c.	
	₽ ÎP	
	M	
	× b v	
	L. A. C.	
33		
	We know that the sum of linear pair are always equal to 180°	
	So, $\angle POY + a + b = 180^{\circ}$	
SOLUTION	00, 2101 10 100	1
SOLUTION	Dutting the value of (DOV = 00° (as given in the question)	т
	Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we	
	get, $a+b = 90^{\circ}$	
	Now, it is given that $a:b=2:3$ so,	
		1

	Let a be 2x and b be 3x	
	$2x + 3x = 90^{\circ}$	
	Solving this we get	
	$5x = 90^{\circ}$	
	So, $x = 18^{\circ}$	
	50, X = 10	1
	$\therefore a = 2 \times 18^{\circ} = 36^{\circ}$	Т
	Similarly, b can be calculated and the value will be	
	$b = 3 \times 18^{\circ} = 54^{\circ}$	
	0 - 3×10 - 34	1
	From the diagram by a slee forms a straight angle so	1
	From the diagram, b+c also forms a straight angle so,	
	$b+c = 180^{\circ}$	
	$c+54^{\circ} = 180^{\circ}$	
	$\therefore c = 126^{\circ}$	
		1
	In Fig. if AB \parallel CD, \angle APQ = 50° and \angle PRD = 127°, find x and	
	y.	
	A P B	
	50°	
	y	
	127°	
	x	
	C Q R D	
33 OR		
	From the diagram,	
	$\angle APQ = \angle PQR$ (Alternate interior angles)	
	Now, putting the value of $\angle APQ = 50^{\circ}$ and $\angle PQR = x$ we get,	
	$x = 50^{\circ}$	
SOLUTION		1
	Also,	
	$\angle APR = \angle PRD$ (Alternate interior angles)	
	Or, $\angle APR = 127^{\circ}$ (As it is given that $\angle PRD = 127^{\circ}$)	
	We know that $\angle APR = \angle APQ + \angle QPR$	2
	Now putting values of /ODD = y and /ADD = 1279 was get	
	Now, putting values of $\angle QPR = y$ and $\angle APR = 127^{\circ}$ we get,	
	$127^{\circ} = 50^{\circ} + y$	
	Or, $y = 77^{\circ}$	
	Thus, the values of x and y are calculated as:	
	$x = 50^{\circ} \text{ and } y = 77^{\circ}$	2

	Find the area of a triangle two sides of which are 18cm and	
34	10cm and the perimeter is 42cm.	
	Assume the third side of the triangle to be "x".	
	Now, the three sides of the triangle are 18 cm, 10 cm, and "x" cm	
	It is given that the perimeter of the triangle = 42cm	
	So, $x = 42-(18+10)$ cm = 14 cm	
SOLUTION		1
	\therefore The semi perimeter of triangle = $42/2 = 21$ cm	
	Using Heron's formula,	
	Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
		2
	$=\sqrt{21(21-18)(21-10)(21-14)}$ cm ²	
	$=\sqrt{21\times3\times11\times7}$ m2	1
	$= 21\sqrt{11} \text{ cm}^2$	1
		_
	Find the curved surface area of a right circular cone whose	
	slant height is 10 cm and base radius is 7 cm	
34 OR		
	Given that $l=10$ cm	
	Radius r= 7 cm	
		1
SOLUTION		
	curved surface area of a right circular cone is = $\pi r l$	1
	$C.S = 22/7x7 \times 10$	1
	= 220 cm2	2
	In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$. Show	
35	that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?	

	$\begin{array}{c} C \\ \\ D \end{array}$	
SOLUTION	It is given that AC and AD are equal i.e. $AC = AD$ and the line segment AB bisects $\angle A$. We will have to now prove that the two triangles ABC and ABD are congruent i.e. $\triangle ABC \cong \triangle ABD$	2
	Proof: Consider the triangles $\triangle ABC$ and $\triangle ABD$, (i) $AC = AD$ (It is given in the question) (ii) $AB = AB$ (Common) (iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A) $\triangle ABC \cong \triangle ABD$ (by SAS congruency criterion)	2
	For the 2nd part of the question, BC = BD (by C.P.C.T.) SECTION -E	1
	122m 22m 120m	
36	The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisement yields an earning of Rs 5000 per m² per year. Based on the above information and the given figure answer the followings (i) Perimeter of wall is (ii) Write down the Heron's Formula. (iii) Area of triangular wall is	

	OR If company hired one of its walls with area 1680 m² for 3 months, then how much rent did it pay?	
SOLUTION	(i) The sides of the triangle ABC are 122 m, 22 m and 120 m resp. Now, the perimeter will be (122+22+120) = 264 m	1
	(ii) Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = (a+b+c)/2$	1
	(iii) the semi perimeter (s) = 264/2 = 132 m Using Heron's formula,	
	Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$=\sqrt{132(132-122)(132-22)(132-120)}$	
	$=\sqrt{132 \times 10 \times 110 \times 12} = 1320 \text{ m}^2$	2
	OR	
	We know that the rent of advertising per year = 5000 per m^2	
	\therefore The rent of one wall for 3 months = Rs. $(1680 \times 5000 \times 3)/12$	
	= Rs 2100000.	2
	$X' \leftarrow \begin{array}{c} X \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	See Fig and write the following: (i) The coordinates of B. (ii) The point identified by the coordinates (-3, -5). (iii) Find the abscissa of point D and the ordinate of point H. OR Find the area of the rectangle formed by the line segment	
37	BD and the X-axis in the figure.	
SOLUTION	(i) The co-ordinates of B $(-5, 2)$.	1
	(ii) The point identified by the coordinates $(-3, -5)$ is E.	1
	(iii) abscissa of the point D is 6 and ordinate of point H is -3.	2

