Model Question Paper

Rol	l No		(Session-20	20-21)	(10+1) Class
			(Chemis	stry)	
Tot	al no	o. of question s : 2	28		
Tin	ie Al	llowed: 3 hrs		Max	imum Marks : 60
Spe	cial	Instructions:-			
(i)	You	must indicate on	your answer	book the sam	e question no. as ap-
	pea	rs in your quest <mark>ion</mark>	paper.		
(ii)	All	question <mark>s are c</mark> omp	ulsory. Intern	al choices hav	<mark>ve been</mark> given in some
		stions.			
(iii)	Q. 1	No. 7,13,15,19,26	(a) and 27 (a	a,c) are based	on PISA format.
(iv)	Ma	rks allotted to each	question are	indicated aga	ainst each.
1.	Αjι	ng contains 2L of m	ilk. The valu	e of milk <mark>in</mark> m	³ is: 1
	(a)	20m³	(b)	$2 \times 10^{-2} \mathrm{m}^3$	
	(c)	$2 \times 10^{-3} \text{ m}^3$	(d)	$2m^3$	
2.	The	total number of no	odes for a 3d	orbital are	1
	(a)	1	(b)	2	
	(c)		(d)		
3.	The	_	e is square plan	nar, the hybrid	isation involved is 1
	(a)	sp ³ hybridization	. ,	sp ² hybridiza	
		dsp ² hybridization	, ,	sp ³ d ² hybrid	lisation 1
4.	The energy of an insulated system is				
	(a)	infinite	. ,		n surroundings
	(c)	zero	(d)	constant	
			1		

5.	Aci	dic solution has an pH.		1
	(a)	greater than 7 (>7)	(b)	less than 7 (<7)
	(c)	exactly 7	(d)	7.3
6.	An	oxidising agent is a/an		. 1
	(a)	acceptor of electron (s)	(b)	donor of electron (s)
	(c)	both a and b	(d)	none of these
7.	A si	ingle bond is always a 'σ' l	ond	where as multiple bonds contains
	botl	$h \sigma$ and π bonds. A double	e bon	and contains one σ and one π bond
	whe	ereas a triple bond contains	s one	σ and 2π bonds. On basis of this
	state	ement calculate σ and π be	onds	in $HC \equiv C - CH = CH - CH_3 1$
	(a)	$\sigma = 10, \ \pi = 2$	(b)	$\sigma = 8, \ \pi = 3$
	(c)	$\sigma = 2, \ \pi = 3$	(d)	$\sigma = 10, \ \pi = 3$
8.	The	strongest reduing agent am	ong	alkali metals is 1
	(a)	Li	(b)	Na
	(c)	Cs	(d)	K
9.	The	reaction		1
	CH.	$\frac{1}{3} - CH = CH_2 + HBr $	₆ H ₅ Co	$O_2 O_2 \longrightarrow CH_3 - CH_2 - CH_2$ Br is an
		mple of		1
	(a)	Markovnikov rule	(b)	anti Markovnikov rule
	(c)	Friedel craft acylation	(d)	Friedel craft alkylation
0.	The	most serious water pollutants	s are c	lisease causing agents called 1
	(a)	pathogens	(b)	smog
	(c)	acid rain	(d)	carcinogenics
1.	Cal	culate amount of water in	(g) p	roduced by combustion of 16g of
	met	hane.		2

				OI	
	Calc	culate the mo	olarity	of NaOH in the solution prepared by disso	lving
	its 4	g in enough	water	to form 250 ml of the solution.	2
12.	Exp	lain line spec	ctrum	of hydrogen atom using Bohr's model.	2
				Or	
	A ce	ertain partic	e carr	ies $.5 \times 10^{-16}$ c of static electric charge. C	alcu-
				ns present in it.	
13.	Mate	ch Column I	with (Column II	2
		Column I		Column II	
	(a)	BF ₃	(i)	Trigonal bipyramidal	
	(b)	CH ₄	(ii)	Octahedral	
				Trigonal planar	
	(d)	SF ₆	(iv)	Tetrahedral	
14.	Expl	lain the shap	e of H	O molecule on basis of VSEPR theory.	2
				ensity and molar mass of a gaseous substar	
	J =	\overline{RT} , where	e J is	density of subtance P is pressure of gas	eous
				mass, R is gas constant (= 8.3 J mol ⁻¹ K ⁻¹	
				what is the density of H ₂ gas at 27°C and 2	
		ressure.		-	2
6.	Expl	ain Dalton's	law of	f partial pressures	2
				Or	
	Deriv	ve Ideal gas	equati	on.	2
7.	Deri	ve a relation	betwe	een Cp and Cv for an ideal gas.	2
8.	Expla	ain law of che	mical	equilibrium using a general reversible reaction	n. 2
	A +	$B \rightleftharpoons C + I$)		
				3	

		to following concentrations were obtained for the formation of	FNF
	fre	om N_2 and H_2 at equilibrium at 500K.	2
		$[I_2] = 1.5 \times 10^{-2} \text{ M}, [H_2] = 3.0 \times 10^{-2} \text{ M}$	
		IH_3] = 1.2 × 10 ⁻² M.	
	Са	alculate the value of equilibrium constant.	
19	. In	methyl carbocation $\begin{pmatrix} + \\ CH_3 \end{pmatrix}$, the carbon is positively charged a	nd i
	sp	hybridised. Thus the shape of C+H ₃ may be considered as b	eina
	de	rived from overlap of three equivalent sp2 hybridised orbitals	Or
	bas	sis of above statement draw the shape of methyl carbocation.	2
20	. Wi	ny does the solubility of alkaline earth metal carbonates and sulph	nates
	inv	water decrease down the group?	2
21.		What is the lowest value of 'n' that allows 'g' orbital to exist	
	(b)	Describe effect of addition of II	1
		$2H_2(g) + CO(g) \rightleftharpoons CH_3 OH(g)$	•
	(c)	For an isolated system, $\Delta \cup = 0$, What will be ΔS ?	1
		Or	
	(a)	An electron is in one of the 3d orbitals. Give all possible valu	e of
		n, l, m_{ℓ} for this electron.	1
	(b)	Define enthalpy of dilution.	1
	(c)	What do you mean by conjugate acid base pair?	1
2.	(a)	What is periodicity? Explain cause of periodicity.	2
	(b)	Define ionic radius.	1

		_			
	•		b		
				г	и
,	u	ч	,	п	

		Or	
	(a)	Explain why the size of cation is smaller than the size of	f paren
		atom.	2
	(b)	and of the element with atoline number	113. 1
23	. (a)	Berryllium and magnesium do not give colour to flame w	where a
		other alkaline earth metals do so, why?	2
	(b)		1
24.	(a)	Explain why is there a phenomenal decrease in ionisation e	
		from carbon to silicon.	2
	(b)	Diamond is covalent. Yet it has high melting point Why?	1
25.	(a)	Explain redox reaction in terms of electron transfer reaction	
	(b)	Explain why solubility of alkaline earth metal hydroxides in	n water
		increase down the group.	1
		Or	
	(a)	Justify that the reaction 2 Na (s) + H_2 (g) \rightarrow 2Na H is a	redox
		change.	2
	(b)	Explain why lithium show anomalous behaviour with response	
		other elements of the group.	1
26.	(a)	Substances which behave as an acid as well as an base are	called
		amphoteric substances give reactions to prove that wate	risan
		amphoteric substance.	2
	(b)	Explain acidic behaviour of Acetylene.	2
	(c)	Give one reaction of H ₂ O ₂ in which it acts as an oxidising ag	oent 1
27.	(a)	Alkyl halides on treatment with sodium metal in dry etherea	1 (free
		from moisture) solution. This reaction is known a Wurtz rea	ction
		The general equation of reaction is	2
		5	4

R-X+2Na+X-R dryether R-R+2NaX use the statement to convert bromoethane into n - butane. (b) Write IUPAC name of 2 $CH_3 - CH - CH - CH$ CH, CH, Write structural formula of following compound 3,4,4,5 -Tetramethyl heptane. (c) What do you mean by the term "acid rain"? 1 28. (a) Discuss inductive effect. (b) What do you mean by heterolytic cleavage of covalent bond? 1 (c) Write chemical equation for Friedel craft alkylation reaction of benzene. 1 (d) What happens when bromine is added to prop-1-yne? 1 (e) Why is KO₂ paramagnetic? 1 (a) Discuss Homologous series. (b) What do you mean by substrate and reagent? (c) How will you convert ethene to ethane? (d) How will you obtain ethene from ethyl bromide? 1 (e) Explain why sodium is less reactive than potassium?