Term-II

Examination April, 2022

Mathematics-XII

Pattern of the Question Paper

Model Question Paper

Time allowed: 3 hrs.

M.M-50

Q. No. 1 to 20 are of 1 marks each (MCQ)

Q.No. 21 to 26 are of 3 marks.

Q.No. 27 to 28 are of 6 marks

- 1. The slope of the normal to the curve $Y = 2x^2 + 3 \sin x$ at x = 0 is
 - (a) 3

(b) $\frac{1}{3}$

(c) -3

- (d) $\frac{-1}{3}$
- 2. $\int \frac{dx}{\sqrt{1-x^2}}$ equals to
 - (a) $\sin^{-1}x + c$
- (b) $\tan x + c$
- $(c) \cos x^{-1}x + c$
- (d) None of these
- 3. $\int \frac{dx}{x^2 + 2x + 2}$ equals to
 - (a) $x \tan^{-1}(x+1) + c$
- (b) $tan^{-1}(x+1)+c$
- (d) $(x + 1) tan^{-1} x + c$
- (d) $tan^{-1} x + c$

4.
$$\int a^x dx$$
 equals to

(a)
$$a^x - \log a + c$$
 (b) $\frac{\log a}{a^x} + c$

(b)
$$\frac{\log a}{a^x} + c$$

(c)
$$\frac{a^x}{\log a} + c$$
 (d) $a^x + c$

(d)
$$a^x + c$$

5.
$$\int x^2 e^{x^3} dx$$
 equals to

(a)
$$\frac{1}{3}xe^{x^3}$$
 (b) $\frac{1}{3}e^{x^3} + c$ (c) $\frac{1}{2}e^{x^3} + c$ (d) None of these

(c)
$$\frac{1}{2}e^{x^3} + c$$
 (e)

6.
$$\int x \cdot \sin x \, dx$$
 equals.

(a)
$$-x \sin x + \cos x + c$$
 (b) $-x \cos x + \sin + c$

(b)
$$-x \cos x + \sin + \cos x + \sin + \cos x + \sin x + \sin x + \cos x + \sin x + \sin x + \cos x + \cos x + \sin x + \cos x + \sin x + \cos x + \cos$$

$$(c) -x \cos x - \sin x + c$$

(d)
$$\sin x + \cos x + c$$

7.
$$\int \frac{(\log x)^2}{x} dx \text{ equals}$$

(a)
$$\frac{1}{3} (\log |x|)^3 + c$$
 (b) $\frac{\log x}{x}$

(b)
$$\frac{\log x}{x}$$

$$(c) \frac{(\log x)^3}{x^3}$$

(d) None of these

8.
$$\int \frac{dx}{\sin^2 x \cos^2 x}$$
 equals

88

- (a) $\tan x + \cot x + c$
- (b) tanx cot x + c
- (c) tanx cot x + c
- (d) tanx cot 2x + c
- sec x dx equals to
 - (a) $\log |\sec x + \tan x| + c$ (b) $\sec x \tan x + c$
 - (c) $\log |\sec x \tan x| + c$
- (d) $\log \left| \csc x \cot x \right| + c$
- 10. Area of the region bounded by the curve $y^2 = 4x$, y axis and the line y = 3 is
 - (a) 2

(c) $\frac{9}{5}$

- 11. The order of the differential equation $2x^2 \frac{d^2y}{dx^2} \frac{3dy}{dx} + y = 0$ is
 - (a) 2

(b) 1

(c)0

- (d) Not defined
- 12. The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is
 - (a) $e^x + e^{-y} = c$
- (b) $e^{x} + e^{y} = c$
- (c) $e^{-x} + e^{y} = c$
- (d) $e^{-x} + e^{-y} = c$

- 13. The number of arbitrary constants in the General solution of a differential equation of fourth order are
 - (a) 0

- (b) 2 (c) 3
- 14. The angle between two non-zero vector $\mathbf{a}^{\mathbf{l}}$ and $\mathbf{b}^{\mathbf{l}}$ is given by
 - (a) $\sin \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$ (b) $\sin \theta = \frac{\vec{a} \times \vec{b}}{|\vec{a}| |\vec{b}|}$
 - (c) $\sin \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
- (d) None of these
- 15. What is the projection of the vector $\hat{\mathbf{i}} \hat{\mathbf{j}}$ the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
 - (a) 0

- (b) 1 (c) 2 (d) 3
- 16. The value of $\begin{vmatrix} \hat{a} \times \hat{b} \end{vmatrix}$ if $\hat{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$ and $\hat{b} = 3\hat{l} + 5\hat{j} 2\hat{k}$
 - (a) $\sqrt{705}$
- (b) $\sqrt{507}$

(c)507

- (d)0
- 17. If a line has direction ratio 2, -1, -2 Then the direction cosines are
 - (a) $\frac{3}{2}, \frac{-1}{3}, \frac{-2}{3}$
- (b) $-\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}$
- (c) $\frac{2}{3}$, $\frac{-1}{3}$, $\frac{-2}{3}$
- (d) None of these

90

18. What is the equation of the plane with intercepts 2, 3 and 4 on the x, y and z – axis respectively.

(a)
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$$

(a)
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$$
 (b) $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 0$

(c)
$$2x + 3y + 4z = 1$$
 (d) $\frac{x}{4} + \frac{y}{3} + \frac{z}{2} = 1$

(d)
$$\frac{x}{4} + \frac{y}{3} + \frac{z}{2} = 1$$

19. If $P(A) = \frac{1}{2}$, P(B) = 0, Then P(A/B) is

$$(a) = 0$$

(b)
$$\frac{1}{2}$$

20. The probability of obtaining an even prime number an each dice, when a pair of dice is called as

(b)
$$\frac{1}{3}$$

(c)
$$\frac{1}{12}$$

(d)
$$\frac{1}{36}$$

21. Find the equation of the tangent to the curve at the pts.

$$y = x^4 - 6x^3 + 13x^2 - 10x + 5$$
 at $(0,5)$

OR

Find the equation of the normal at the point (am², am³) for the curve $ay^2 = x^3$

- 22. Integrate the functions
 - (a) $\int \frac{x^3 \sin(\tan^{-1} x^4)}{1+x^8} dx$ OR $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx$
 - (b) $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx \text{ OR } \int e^{x} (\sin x + \cos x) dx$
- 23. Find area of the region bounded by ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

OR

Find the area bounded by the curve $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

24. Find the general solution of the differential equation

$$\frac{dy}{dx} = (1 + x^2) (1 + y^2)$$

OR

$$(x^2 + xy) dy = (x^2 + y^2) dx$$

25. If $\vec{a}, \vec{b}, \vec{c}$ are unit vector such that $\vec{a} + \vec{b} + \vec{c} = 0$

find the value of \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} is

OR

Find the area of the parallelogram whose adjacent sides are deter-

mined by the vectors
$$\hat{a} = \hat{i} - \hat{j}$$
 $\hat{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\hat{b} = 2\hat{l} - 7\hat{j} + \hat{k}$

- 26. A dies is thrown 6 times. If "getting an odd number" is a success, what is the probility of
 - (a) 5 success
- (b) at most 5 success

OR

If
$$P(A) = \frac{3}{5}$$
 and $P(B) = \frac{1}{5}$, find $P(A \cap B)$, If and A and B are independent events.

27. Find the shortest distance between the lines

$$r = (\hat{1} + 2\hat{j} + \hat{k}) + (\hat{1} + \hat{j} + \hat{u})$$
 and

$$r = (2\hat{1} - \hat{j} - \hat{k}) + (2\hat{1} + \hat{j} + 2\hat{k})$$

28. Solve the linear programming problem graphically Maximize Z = 5x + 3y

Subject to
$$3x + 5y \le 15$$
, $5x + 2y \le 10$ $x \ge 0$ $y \ge 0$