MODEL QUESTION PAPER (TERM - 2)

CLASS - +2

SUBJECT - MATHEMATICS

Time: 3 hours M.M.: 50

- 1. The antiderivative of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$ equals
 - (a) $\frac{1}{3}x^{1/3} + 2x^{1/2} + c$ (b) $\frac{2}{3}x^{2/3} + \frac{1}{x}x^2 + c$
 - (c) $\frac{2}{3}x^{3/2} + 2x^{1/2} + c$ (d) $\frac{3}{2}x^{3/2} + \frac{1}{2}x^{1/2} + c$
- 2. If $\frac{d}{dx} f(x) = 4x^3 \frac{3}{x^4}$ such that f(2) = 0 then f(x) is 1
 - (a) $x^4 + \frac{1}{x^4} \frac{129}{8}$ (b) $x^3 + \frac{1}{x^4} + \frac{129}{8}$
 - (c) $x^4 + \frac{1}{x^3} + \frac{129}{8}$ (d) $x^3 + \frac{1}{x^4} \frac{129}{8}$
- 3. $\int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} dx$ is equal to
 - (a) $\tan x + \cot x + c$ (b) $\tan x + \csc x + c$
 - (c) $-\tan x + \cot x + c$ (d) $\tan x + \sec x + c$

$$4. \int \frac{e^x(1+x)}{\cos^2(e^x x)} dx$$

- (a) $-\cot (ex^{x}) + c$ (b) $\tan (x e^{x}) + c$
- (c) $\tan (e^x) + c$ (d) $\cot e^x + c$
- 5. $\int \frac{dx}{x^2 + 2x + 2}$ equals
 - (a) $x \tan^{-1} (x+1) + c$ (b) $\tan^{-1} (x+1) + c$ (b) $(x+1) \tan^{-1} + c$ (d) $\tan^{-1} x + c$
- 6. $\int \frac{dx}{x(x^2+1)}$ equals
 - (a) $\log |x| \frac{1}{2} \log (x^2 + 1) + c$
 - (b) $\log |x| + \frac{1}{2} \log (x^2 + 1) + c$
 - (c) $-\log |x| + \frac{1}{2} \log (x^2 + 1) + c$
 - (d) $\frac{1}{2} \log |x| + \log (x^2 + 1) + c$

7.
$$\int_{0}^{2/3} \frac{dx}{4+9x^2}$$
 equals

- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{12}$
- (c) $\frac{\pi}{24}$ (d) $\frac{\pi}{4}$

Downloaded from cclchapter.com

- 8. Area of region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is
 - (a) 2

- 9. The order of the differential equation

$$2x^2 \frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$$
 is

(b) 1

(c) 0

- not defined
- 10. Which of the following differential eugations has y = xas one of its particlar solution?

(a)
$$\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$$

(b)
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + xy = x$$

(c)
$$\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 0$$

(d)
$$\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} + xy = 0$$

11. The Integrating factor of the differential equation

$$x\frac{dy}{dx} - y = 2x^2 \text{ is}$$

12. Let the vectors $\overrightarrow{a} \overset{\rightarrow}{\&} \vec{b}$ be such that $|\overrightarrow{a}| = 3$ and

$$|\overrightarrow{b}| = \frac{\sqrt{2}}{3}$$
, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, if the angle

between
$$\stackrel{\rightarrow}{a}$$
 and $\stackrel{\rightarrow}{b}$ is

- 13. If a is a non zero vector of magnitude 'a' and a a non-

zero scalor, then $\gamma \stackrel{\rightarrow}{a}$ is unit vector if

(a) g = 1

(b) g = -1

- (c) a = |g| (d) $a = \frac{1}{|\gamma|}$
- 14. The cross product of two vectors \overrightarrow{a} and \overrightarrow{b} is

 - (a) $\begin{vmatrix} \overrightarrow{a} & | \overrightarrow{b} & | \sin \theta & \hat{n} \end{vmatrix}$ (b) $\begin{vmatrix} \overrightarrow{a} & | = | \overrightarrow{b} & | \sin \theta & \hat{n} \end{vmatrix}$
 - $\begin{vmatrix} \rightarrow & \rightarrow \\ a \end{vmatrix} = \begin{vmatrix} \rightarrow & b \end{vmatrix} \tan \theta \hat{n}$
- (d) None of these

1

- 15. The distance of the plane x + 2y 2z = 9 from the point (2, 3-5) is
 - (a) 3

(b) 4

(c) 0

- (d) 5
- 16. Direction cosines of x-axis are
 - (a) (0, 0, 1)
- (b) (1, 0, 0)
- (b) (0, 1, 0)

- (d) none of these
- 17. The planes 2x + y + 3z 2 = 0 and x 2y + 5 = 0 are
 - (a) parallel

- (b) perpendicular
- (c) intersecting
- (d) none of these
- 18. Three coins are tossed once, probability of getting atmost 2 heads is
 - (b) $\frac{7}{8}$

(b) $\frac{3}{8}$

(c) $\frac{1}{2}$

- (d) $\frac{3}{4}$
- 19. If $P(A) = \frac{2}{3}$, $P(B) = \frac{7}{15}$ and $P(A \cap B) = \frac{1}{5}$ then P(A or B) is
 - (a) $\frac{17}{15}$

(b) $\frac{14}{15}$

(c) $\frac{20}{15}$

(d) $\frac{4}{3}$

- 20. If $P(A) = \frac{1}{2}$, P(B) = 0 then P(A/B) is
 - (a) 0

- (b) $\frac{1}{2}$
- (c) not defined
- (d) 1

21. Evaluate
$$\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$$
 3

Or

$$\int_{0}^{4} |x-1| \ dx$$

22. Solve differential euation.

$$x \frac{dy}{dx} + 2y + x^2 \log x$$

Or

Solve the differential equation and find the particular solution satisfying given condition (x + y) dy + (x - y) dx = 0; y = 1 when x = 1

- 23. Find g if $\hat{i} \hat{j} + \hat{k}$, $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + \gamma\hat{j} 3\hat{k}$ are coplanar.
- 24. Find the angle between two planes 3x 6y + 2z = 7 and 2x + 2y 2z = 5

3

25. Find the shortest distance between the lines

$$\overrightarrow{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k})$$

$$\overrightarrow{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu (2\hat{i} - \hat{j} + 2\hat{k})$$

26. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with peplacement. Find the probability distribution of the number of defective bulbs.

Or

If a fair coin is tossed 10 times. Find the probability of:

- (a) exactly six heads
- (b) at least six heads
- 27. Find the area of region bounded by the ellipse

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Or

Using integration find the area of region bounded by triangle whose vertices are A (-1, 0), B (1, 3) and C (3, 2)

28. Maximize, z = 5x + 10y subject to constraints. 6

$$x + 2y \le 120$$

$$x + y \ge 60$$

$$x - 2y \ge 0$$

$$x, y \ge 0$$

Graphically.